Catalytic chemical recycling and upcycling of polyolefin plastics

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-06-14 DOI:10.1016/j.giant.2024.100307
Yingzi Tan , Yidan Cheng , Jiaming Xu , Haobing Wang
{"title":"Catalytic chemical recycling and upcycling of polyolefin plastics","authors":"Yingzi Tan ,&nbsp;Yidan Cheng ,&nbsp;Jiaming Xu ,&nbsp;Haobing Wang","doi":"10.1016/j.giant.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><p>Polyolefins are the most produced and widely used polymeric materials. However, the chemically inert nature of polyolefins has led to severe environmental pollution, posing a threat to human sustenance and development. Managing and recycling polyolefin plastic waste is crucial for the transition from a linear to a sustainable circular economy. Catalytic chemical recycling includes traditional techniques like pyrolysis and photolysis, and innovative methods that introduce chemical cleavable bonds into the polyolefin chain for closed-loop recycling. Catalytic post-functionalization of post-consumer polyolefin materials is another strategy to tackle plastic waste, aiming to upgrade the materials’ utility and contribute to sustainability. Overall, developing catalytic methods for deconstructing and upcycling plastics is essential to encourage better reclamation practices and reduce the environmental impact of plastic waste.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100307"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000717/pdfft?md5=52fe287ef78d69bc63a34adc9dcea005&pid=1-s2.0-S2666542524000717-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000717","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyolefins are the most produced and widely used polymeric materials. However, the chemically inert nature of polyolefins has led to severe environmental pollution, posing a threat to human sustenance and development. Managing and recycling polyolefin plastic waste is crucial for the transition from a linear to a sustainable circular economy. Catalytic chemical recycling includes traditional techniques like pyrolysis and photolysis, and innovative methods that introduce chemical cleavable bonds into the polyolefin chain for closed-loop recycling. Catalytic post-functionalization of post-consumer polyolefin materials is another strategy to tackle plastic waste, aiming to upgrade the materials’ utility and contribute to sustainability. Overall, developing catalytic methods for deconstructing and upcycling plastics is essential to encourage better reclamation practices and reduce the environmental impact of plastic waste.

Abstract Image

聚烯烃塑料的催化化学回收和升级再造
聚烯烃是产量最大、应用最广泛的聚合材料。然而,聚烯烃的化学惰性导致了严重的环境污染,对人类的生存和发展构成了威胁。管理和回收聚烯烃塑料废弃物对于从线性经济过渡到可持续循环经济至关重要。催化化学回收包括热解和光解等传统技术,以及将化学可裂解键引入聚烯烃链以实现闭环回收的创新方法。消费后聚烯烃材料的催化后功能化是解决塑料废物问题的另一项战略,旨在提升材料的效用,促进可持续发展。总之,开发塑料解构和升级再循环的催化方法对于鼓励更好的回收实践和减少塑料废物对环境的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信