{"title":"A study of cosmic microwave background using non-extensive statistics","authors":"Somita Dhal, R. K. Paul","doi":"10.1007/s10686-024-09943-x","DOIUrl":null,"url":null,"abstract":"<div><p>The cosmic microwave background (CMB) radiation, the relic afterglow of the Big Bang, has become one of the most useful and precise tools in modern precision cosmology. In this article, we employ Tsallis non-extensive statistical framework to calculate the cosmic microwave background (CMB) temperature and its probability distribution by utilising a recently proposed blackbody radiation inversion (BRI) technique and the cosmic background explorer/ far infrared absolute spectrophotometer (COBE/FIRAS) dataset. Here, we have used the best-fit values of q = 0.99888 ± 0.00016 and q = 1.00012 ± 0.00001, obtained by fitting COBE/FIRAS data with two different versions of non-extensive models. We compare the results with the more conventional extensive statistical analysis i.e. for q = 1.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09943-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cosmic microwave background (CMB) radiation, the relic afterglow of the Big Bang, has become one of the most useful and precise tools in modern precision cosmology. In this article, we employ Tsallis non-extensive statistical framework to calculate the cosmic microwave background (CMB) temperature and its probability distribution by utilising a recently proposed blackbody radiation inversion (BRI) technique and the cosmic background explorer/ far infrared absolute spectrophotometer (COBE/FIRAS) dataset. Here, we have used the best-fit values of q = 0.99888 ± 0.00016 and q = 1.00012 ± 0.00001, obtained by fitting COBE/FIRAS data with two different versions of non-extensive models. We compare the results with the more conventional extensive statistical analysis i.e. for q = 1.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.