Tong Tian , Lei Yang , Wentao Liu , Yu Yang , Hao Xu , Zhengyan Yang , Jiaqi Zhang , Zhanjun Wu
{"title":"Two-stage residual networks for damage identification and location of stiffened composite panel based on guided waves","authors":"Tong Tian , Lei Yang , Wentao Liu , Yu Yang , Hao Xu , Zhengyan Yang , Jiaqi Zhang , Zhanjun Wu","doi":"10.1016/j.ndteint.2024.103162","DOIUrl":null,"url":null,"abstract":"<div><p>The damage detection of the stiffened composite panel, as a typical aircraft structure, is a research hotspot in Structural Health Monitoring (SHM). where guided waves propagate with multi-modal and dispersion characteristics. The traditional damage detection method manually extracts the potential discriminative features of the signal to achieve damage identification, depending on expert experience. In this paper, we propose a two-stage residual networks (ResNets) framework based on guided waves to locate damage in the stiffened composite panel, which automatically mines the high-dimensional features with sensitive discriminant information. The guided wave signal acquisition system collects four types of data: health data, stringer damage data, damage data on the skin of the stringer-side, and damage data on the skin-side. The first-stage utilizes a ResNet to classify the structure condition, while in the second-stage, three separate ResNets are employed to locate the damage according to the classification results of the first-stage. The experimental results show that the accuracy of the first-stage damage classification and the damage localization of the stringer and the skin of the stringer-side in the second-stage has reached 100%, and that of the skin-side is 99.13%, which significantly outperforms single-stage methods. This strategy of inter-class discrimination and intra-class precise localization of damage can not only identify the damaged regions but also determine the specific location of the damage, which greatly increases the performance of SHM. The present two-stage method is a potential solution for future SHM strategies and further investigation is warranted.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"146 ","pages":"Article 103162"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The damage detection of the stiffened composite panel, as a typical aircraft structure, is a research hotspot in Structural Health Monitoring (SHM). where guided waves propagate with multi-modal and dispersion characteristics. The traditional damage detection method manually extracts the potential discriminative features of the signal to achieve damage identification, depending on expert experience. In this paper, we propose a two-stage residual networks (ResNets) framework based on guided waves to locate damage in the stiffened composite panel, which automatically mines the high-dimensional features with sensitive discriminant information. The guided wave signal acquisition system collects four types of data: health data, stringer damage data, damage data on the skin of the stringer-side, and damage data on the skin-side. The first-stage utilizes a ResNet to classify the structure condition, while in the second-stage, three separate ResNets are employed to locate the damage according to the classification results of the first-stage. The experimental results show that the accuracy of the first-stage damage classification and the damage localization of the stringer and the skin of the stringer-side in the second-stage has reached 100%, and that of the skin-side is 99.13%, which significantly outperforms single-stage methods. This strategy of inter-class discrimination and intra-class precise localization of damage can not only identify the damaged regions but also determine the specific location of the damage, which greatly increases the performance of SHM. The present two-stage method is a potential solution for future SHM strategies and further investigation is warranted.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.