Yeedo Chun , Yeling Zhu , Cosima Stubenrauch , Yi Lu , Orlando J. Rojas
{"title":"Biobased ordered porous materials in the nano-to microscales","authors":"Yeedo Chun , Yeling Zhu , Cosima Stubenrauch , Yi Lu , Orlando J. Rojas","doi":"10.1016/j.cocis.2024.101822","DOIUrl":null,"url":null,"abstract":"<div><p>Ordered porous materials (OPMs) are defined according to pore size, where ordered macropores (>50 nm) govern transport of fluids and mesopores (>2 nm, <50 nm) and micropores (<2 nm, IUPAC definitions) control molecular or ionic interactions. The growing importance of sustainable materials has incentivized the development of biobased OPMs (bioOPMs) with pore sizes ranging from 0.3 nm–9 nm and 1 μm–500 μm. Synthesizing bioOPMs typically involves aqueous solutions and suspensions which require a thorough understanding of biobased precursor-water interactions. Emerging approaches in templating based on liquid foams, breath-figure, and micelles are pivotal for achieving ordered assemblies, with solidity and consolidation occurring through water removal. This review describes recent advances in the design and utilization of bioOPMs, particularly those produced by water-based templating. It also highlights notable exceptions to water-based synthesis and identifies gaps in the science and technology of bioOPMs, offering perspectives on future developments in the field.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"73 ","pages":"Article 101822"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029424000402/pdfft?md5=e926c217fd19d043179bec79a892f2a6&pid=1-s2.0-S1359029424000402-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000402","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ordered porous materials (OPMs) are defined according to pore size, where ordered macropores (>50 nm) govern transport of fluids and mesopores (>2 nm, <50 nm) and micropores (<2 nm, IUPAC definitions) control molecular or ionic interactions. The growing importance of sustainable materials has incentivized the development of biobased OPMs (bioOPMs) with pore sizes ranging from 0.3 nm–9 nm and 1 μm–500 μm. Synthesizing bioOPMs typically involves aqueous solutions and suspensions which require a thorough understanding of biobased precursor-water interactions. Emerging approaches in templating based on liquid foams, breath-figure, and micelles are pivotal for achieving ordered assemblies, with solidity and consolidation occurring through water removal. This review describes recent advances in the design and utilization of bioOPMs, particularly those produced by water-based templating. It also highlights notable exceptions to water-based synthesis and identifies gaps in the science and technology of bioOPMs, offering perspectives on future developments in the field.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.