{"title":"High-performance electrocatalysts based core-shell SWCNHs@ZIF-67 heterostructure for ultrasensitive H2O2 sensing","authors":"Yile Hu, Jingge Shi, Zifan Wang, Xiaopeng Wang, Yujia Lai, Yanke Chen, Zhiqiang Wei, Hui Yang","doi":"10.1016/j.ijoes.2024.100689","DOIUrl":null,"url":null,"abstract":"<div><p>ZIF-67 is a Co-based zeolitic imidazolate framework material with both redox metal active sites and organic functional groups. Single walled carbon nanohorns (SWCNHs) is a novel horn-shaped carbon nanomaterial with abundant carbon active sites and high conductivity. SWCNHs@ZIF-67 heterostructure composites were prepared by environmental-friendly method with ZIF-67 as core and SWCNHs as shell, then were fixed on the surface of glassy carbon electrode (GCE) to obtain the electrochemical sensing platform for detecting H<sub>2</sub>O<sub>2</sub>. The as-proposed sensor (SWCNHs@ZIF-67/GCE) demonstrates excellent electrocatalytic performance for the reduction of H<sub>2</sub>O<sub>2</sub> with two linearity scopes (0.50–150 µM, 150–400 µM) and a low detection limit of 0.15 μM, which is attributed to the synergistic electrocatalytic effect between ZIF-67 and SWCNHs. The as-fabricated sensor was satisfactorily used for H<sub>2</sub>O<sub>2</sub> analysis in plasma samples, revealing an immense potential application in vitro assay of H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S145239812400230X/pdfft?md5=9bb2471d81ef9d6b7ed66915db63bec3&pid=1-s2.0-S145239812400230X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S145239812400230X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ZIF-67 is a Co-based zeolitic imidazolate framework material with both redox metal active sites and organic functional groups. Single walled carbon nanohorns (SWCNHs) is a novel horn-shaped carbon nanomaterial with abundant carbon active sites and high conductivity. SWCNHs@ZIF-67 heterostructure composites were prepared by environmental-friendly method with ZIF-67 as core and SWCNHs as shell, then were fixed on the surface of glassy carbon electrode (GCE) to obtain the electrochemical sensing platform for detecting H2O2. The as-proposed sensor (SWCNHs@ZIF-67/GCE) demonstrates excellent electrocatalytic performance for the reduction of H2O2 with two linearity scopes (0.50–150 µM, 150–400 µM) and a low detection limit of 0.15 μM, which is attributed to the synergistic electrocatalytic effect between ZIF-67 and SWCNHs. The as-fabricated sensor was satisfactorily used for H2O2 analysis in plasma samples, revealing an immense potential application in vitro assay of H2O2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.