{"title":"Magneto-optical efficiencies combined with surface-plasmon resonance in FeSi/Au system","authors":"Yukiko Yasukawa, Masaki Itoh, Ryo Sugita, Haruki Yamane","doi":"10.1063/5.0194017","DOIUrl":null,"url":null,"abstract":"We designed and fabricated our original laminated materials that simultaneously exhibited different properties: magneto-optical (MO), i.e., the transverse MO Kerr effects (T-MOKE) and surface-plasmon resonance (SPR). The material design was composed of dielectric, magnetic, and noble-metal layers. We selected the soft-magnetic FeSi thin film as a T-MOKE magnetic layer, while an Au thin film was chosen as a SPR-source layer, creating an FeSi-/Au-based “MO-SPR material.” Strong interactions between T-MOKE and SPR were demonstrated. When the material is irradiated with a laser beam of wavelength 660 nm, at the SPR angle to the material, θR, the highest T-MOKE value was attained. The T-MOKE was markedly enhanced at θR: ∼32 to ∼84 times higher compared with the FeSi single layer (reference). The T-MOKE was amplified by a strong interaction between MO activities and electromagnetic field distributions. The FeSi (5.0 nm)/Au (14.8 nm) specimen achieved the best signal-to-noise ratio (SNR). The sample was then tested for its sensing efficiency by measuring the T-MOKE using distilled water and a glucose solution, respectively: It was possible to distinguish between two different solutions. Our MO-SPR materials utilizing both magnetism and near-field light are thus sufficiently sensitive to be applicable as sensing materials. Furthermore, the polarity of the T-MOKE signal is flipped under the application of a small, external magnetic field owing to the soft magnetism of the FeSi T-MOKE layer. This is highly advantageous to create high-frequency AC-magnetic synchronized T-MOKE sensing systems with low-power consumption.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0194017","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We designed and fabricated our original laminated materials that simultaneously exhibited different properties: magneto-optical (MO), i.e., the transverse MO Kerr effects (T-MOKE) and surface-plasmon resonance (SPR). The material design was composed of dielectric, magnetic, and noble-metal layers. We selected the soft-magnetic FeSi thin film as a T-MOKE magnetic layer, while an Au thin film was chosen as a SPR-source layer, creating an FeSi-/Au-based “MO-SPR material.” Strong interactions between T-MOKE and SPR were demonstrated. When the material is irradiated with a laser beam of wavelength 660 nm, at the SPR angle to the material, θR, the highest T-MOKE value was attained. The T-MOKE was markedly enhanced at θR: ∼32 to ∼84 times higher compared with the FeSi single layer (reference). The T-MOKE was amplified by a strong interaction between MO activities and electromagnetic field distributions. The FeSi (5.0 nm)/Au (14.8 nm) specimen achieved the best signal-to-noise ratio (SNR). The sample was then tested for its sensing efficiency by measuring the T-MOKE using distilled water and a glucose solution, respectively: It was possible to distinguish between two different solutions. Our MO-SPR materials utilizing both magnetism and near-field light are thus sufficiently sensitive to be applicable as sensing materials. Furthermore, the polarity of the T-MOKE signal is flipped under the application of a small, external magnetic field owing to the soft magnetism of the FeSi T-MOKE layer. This is highly advantageous to create high-frequency AC-magnetic synchronized T-MOKE sensing systems with low-power consumption.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.