Alexander Kyuroson, Avijit Banerjee, Nektarios Aristeidis Tafanidis, Sumeet Satpute, George Nikolakopoulos
{"title":"Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning","authors":"Alexander Kyuroson, Avijit Banerjee, Nektarios Aristeidis Tafanidis, Sumeet Satpute, George Nikolakopoulos","doi":"10.1016/j.ejcon.2024.101052","DOIUrl":null,"url":null,"abstract":"<div><div>The recent advances in space technology are focusing on fully autonomous, real-time, long-term orbit management and mission planning for large-scale satellite constellations in Low-Earth Orbit (LEO). Thus, a pioneering approach for autonomous orbital station-keeping has been introduced using a model-free Deep Policy Gradient-based Reinforcement Learning (DPGRL) strategy explicitly tailored for LEO. Addressing the critical need for more efficient and self-regulating orbit management in LEO satellite constellations, this work explores the potential synergy between Deep Reinforcement Learning (DRL) and Neuro-Evolution of Augmenting Topology (NEAT) to optimize station-keeping strategies with the primary goal to empower satellite to autonomously maintain their orbit in the presence of external perturbations within an allowable tolerance margin, thereby significantly reducing operational costs while maintaining precise and consistent station-keeping throughout their life cycle. The study specifically tailors DPGRL algorithms for LEO satellites, considering low-thrust constraints for maneuvers and integrating dense reward schemes and domain-based reward shaping techniques. By showcasing the adaptability and scalability of the combined NEAT and DRL framework in diverse operational scenarios, this approach holds immense promise for revolutionizing autonomous orbit management, paving the way for more efficient and adaptable satellite operations while incorporating the physical constraints of satellite, such as thruster limitations.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101052"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001122","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent advances in space technology are focusing on fully autonomous, real-time, long-term orbit management and mission planning for large-scale satellite constellations in Low-Earth Orbit (LEO). Thus, a pioneering approach for autonomous orbital station-keeping has been introduced using a model-free Deep Policy Gradient-based Reinforcement Learning (DPGRL) strategy explicitly tailored for LEO. Addressing the critical need for more efficient and self-regulating orbit management in LEO satellite constellations, this work explores the potential synergy between Deep Reinforcement Learning (DRL) and Neuro-Evolution of Augmenting Topology (NEAT) to optimize station-keeping strategies with the primary goal to empower satellite to autonomously maintain their orbit in the presence of external perturbations within an allowable tolerance margin, thereby significantly reducing operational costs while maintaining precise and consistent station-keeping throughout their life cycle. The study specifically tailors DPGRL algorithms for LEO satellites, considering low-thrust constraints for maneuvers and integrating dense reward schemes and domain-based reward shaping techniques. By showcasing the adaptability and scalability of the combined NEAT and DRL framework in diverse operational scenarios, this approach holds immense promise for revolutionizing autonomous orbit management, paving the way for more efficient and adaptable satellite operations while incorporating the physical constraints of satellite, such as thruster limitations.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.