Multiple-relaxation-time lattice boltzmann simulation of natural convection of ethylene Glycol -Al2O3 power-law Non-newtonian nanofluid in an open enclosure with adiabatic fins
Israt Jahan Supti , Meratun Junnut Anee , Md. Mamun Molla , Preetom Nag
{"title":"Multiple-relaxation-time lattice boltzmann simulation of natural convection of ethylene Glycol -Al2O3 power-law Non-newtonian nanofluid in an open enclosure with adiabatic fins","authors":"Israt Jahan Supti , Meratun Junnut Anee , Md. Mamun Molla , Preetom Nag","doi":"10.1016/j.sajce.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The heat transfer by natural convection of a nanofluid, which is ethylene glycol<span><math><mrow><mo>−</mo><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span> has been analyzed in an open cavity numerically using the multiple-relaxation-time - lattice Boltzmann method by the graphics processing unit high-performance parallel computing. The right side of the cavity is open, and different boundary conditions have been applied to all the walls. Besides, one adiabatic fin has been installed on each side of the enclosure’s top and bottom sides. Here, the Prandtl number is fixed at 16.6, and the Rayleigh number changes from <span><math><mrow><msup><mn>10</mn><mn>4</mn></msup><mspace></mspace><mo>−</mo><mspace></mspace><msup><mn>10</mn><mn>6</mn></msup></mrow></math></span> with the nanoparticle volume fraction from <span><math><mrow><mn>0</mn><mo>%</mo><mspace></mspace><mo>−</mo><mspace></mspace><mn>5</mn><mo>%</mo></mrow></math></span> has been used for numerical simulations. Besides, in this work, the power-law index is an important parameter as well, and 0.7, 0.8, 1, 1.2, and 1.4 are the values of this parameter. Results are presented concerning both the average and local Nusselt numbers in the form of streamlines, isotherms, temperature distributions, velocity distributions, heat transfer rate, and entropy production. It is observed when increases, average Nusselt number increases <span><math><mrow><mn>607.94</mn><mo>%</mo></mrow></math></span>, and for this reason, the overall heat transfer rate rises because of buoyancy force. In addition, the average Nusselt number falls by <span><math><mrow><mn>83.28</mn><mo>%</mo></mrow></math></span> when the power-law index rises; as a result, the total heat transfer rate falls because fluid viscosity increases with the power-law index. It is also observed that for shear-thickening fluids, the temperature gradient is higher. On the contrary, the temperature started decreasing with the increase of the power-law index. Additionally, the local Nusselt number value rises as power-law index falls. Moreover, the heat transfer rate increases by <span><math><mrow><mn>7.08</mn><mo>%</mo></mrow></math></span> when volume fraction increases. The intensity of buoyancy force reduces with the increase of volume fraction. Besides, the overall entropy generation rises when the Rayleigh number and the volume fraction increase, but it decreases when the power-law index increases. So, when the Rayleigh number is <span><math><msup><mn>10</mn><mn>6</mn></msup></math></span>, the power-law index is 0.7, and the volume fraction is 0.00 then the entropy generation is the highest. This current research has many applications for example heat exchangers, electronic cooling equipment, solar heating systems, aerospace applications, medical devices, and entropy generation-related systems.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"49 ","pages":"Pages 295-312"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000696/pdfft?md5=6522875bea282491464d377550983016&pid=1-s2.0-S1026918524000696-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The heat transfer by natural convection of a nanofluid, which is ethylene glycol has been analyzed in an open cavity numerically using the multiple-relaxation-time - lattice Boltzmann method by the graphics processing unit high-performance parallel computing. The right side of the cavity is open, and different boundary conditions have been applied to all the walls. Besides, one adiabatic fin has been installed on each side of the enclosure’s top and bottom sides. Here, the Prandtl number is fixed at 16.6, and the Rayleigh number changes from with the nanoparticle volume fraction from has been used for numerical simulations. Besides, in this work, the power-law index is an important parameter as well, and 0.7, 0.8, 1, 1.2, and 1.4 are the values of this parameter. Results are presented concerning both the average and local Nusselt numbers in the form of streamlines, isotherms, temperature distributions, velocity distributions, heat transfer rate, and entropy production. It is observed when increases, average Nusselt number increases , and for this reason, the overall heat transfer rate rises because of buoyancy force. In addition, the average Nusselt number falls by when the power-law index rises; as a result, the total heat transfer rate falls because fluid viscosity increases with the power-law index. It is also observed that for shear-thickening fluids, the temperature gradient is higher. On the contrary, the temperature started decreasing with the increase of the power-law index. Additionally, the local Nusselt number value rises as power-law index falls. Moreover, the heat transfer rate increases by when volume fraction increases. The intensity of buoyancy force reduces with the increase of volume fraction. Besides, the overall entropy generation rises when the Rayleigh number and the volume fraction increase, but it decreases when the power-law index increases. So, when the Rayleigh number is , the power-law index is 0.7, and the volume fraction is 0.00 then the entropy generation is the highest. This current research has many applications for example heat exchangers, electronic cooling equipment, solar heating systems, aerospace applications, medical devices, and entropy generation-related systems.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.