Enhancing impact resilience of thermal battery through honeycomb-structured aluminum buffering devices: Insights from large-scale gas-gun tests and simulations
Yeon Taek Choi , Jihye Kwon , Hyungu Kang , Minu Kim , Ki Jong Kim , Jae Min Lee , Hae-Won Cheong , Sunghak Lee , Hyoung Seop Kim
{"title":"Enhancing impact resilience of thermal battery through honeycomb-structured aluminum buffering devices: Insights from large-scale gas-gun tests and simulations","authors":"Yeon Taek Choi , Jihye Kwon , Hyungu Kang , Minu Kim , Ki Jong Kim , Jae Min Lee , Hae-Won Cheong , Sunghak Lee , Hyoung Seop Kim","doi":"10.1016/j.ijimpeng.2024.105023","DOIUrl":null,"url":null,"abstract":"<div><p>Modern warfare relies heavily on electronic equipment, necessitating reliable energy sources like thermal batteries. Assessing their impact resilience, a study employed honeycomb-structured Al plates as buffering devices in a large-scale gas gun simulating artillery fire. Comparison between peak curves from gas-gun tests and simulations with varying honeycomb wall thicknesses revealed unique patterns, attributed to the buffering device's deformation-restoration process. Different honeycomb wall thicknesses led to varying deformation behavior and impact deceleration, complicating effective energy absorption assessment. Stepped honeycomb wall designs aimed to balance compression, extending energy absorption and reducing deceleration peaks. Prototype honeycomb buffering devices showed improved energy absorption and reduced deceleration during gas-gun tests. Gas-gun tests highlighted complexities in energy absorption assessment, with designs proposing improved energy absorption and reduced deceleration. The actual gas-gun test launched a projectile equipped with a thermal battery and buffering device, resulting in slight casing deformation, while battery cells remained intact, exceeding the standard discharge time (1 h).</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24001477","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modern warfare relies heavily on electronic equipment, necessitating reliable energy sources like thermal batteries. Assessing their impact resilience, a study employed honeycomb-structured Al plates as buffering devices in a large-scale gas gun simulating artillery fire. Comparison between peak curves from gas-gun tests and simulations with varying honeycomb wall thicknesses revealed unique patterns, attributed to the buffering device's deformation-restoration process. Different honeycomb wall thicknesses led to varying deformation behavior and impact deceleration, complicating effective energy absorption assessment. Stepped honeycomb wall designs aimed to balance compression, extending energy absorption and reducing deceleration peaks. Prototype honeycomb buffering devices showed improved energy absorption and reduced deceleration during gas-gun tests. Gas-gun tests highlighted complexities in energy absorption assessment, with designs proposing improved energy absorption and reduced deceleration. The actual gas-gun test launched a projectile equipped with a thermal battery and buffering device, resulting in slight casing deformation, while battery cells remained intact, exceeding the standard discharge time (1 h).
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications