Daniele Cioni , David Morin , Arjan Strating , Stephan Kizio , Magnus Langseth , Miguel Costas
{"title":"Testing and modelling of aluminium cans for prismatic lithium-ion cells under crash loading","authors":"Daniele Cioni , David Morin , Arjan Strating , Stephan Kizio , Magnus Langseth , Miguel Costas","doi":"10.1016/j.ijimpeng.2024.105029","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical performance of a deep-drawn AA3003-H14 aluminium can, which serves as an external shell for vehicle lithium-ion cells, was investigated in the present study. The experimental program included material testing at different locations on the cell, at different orientations, at various strain rates, and component testing. The material was found to be mildly anisotropic and significantly strain rate sensitive. A suitable constitutive model was proposed and validated against experiments to describe the material’s mechanical behaviour. Quasi-static and dynamic tests were performed on the cans and compared with finite element simulations to validate the proposed material model. The limitations of large-scale models suitable for industrial applications were assessed. The results show how this large-scale model can be built for an accurate prediction of the crash behaviour of aluminium cans for prismatic lithium-ion cells.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0734743X24001532/pdfft?md5=f2f980c4c4b6f2b640abf9cc71274053&pid=1-s2.0-S0734743X24001532-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24001532","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical performance of a deep-drawn AA3003-H14 aluminium can, which serves as an external shell for vehicle lithium-ion cells, was investigated in the present study. The experimental program included material testing at different locations on the cell, at different orientations, at various strain rates, and component testing. The material was found to be mildly anisotropic and significantly strain rate sensitive. A suitable constitutive model was proposed and validated against experiments to describe the material’s mechanical behaviour. Quasi-static and dynamic tests were performed on the cans and compared with finite element simulations to validate the proposed material model. The limitations of large-scale models suitable for industrial applications were assessed. The results show how this large-scale model can be built for an accurate prediction of the crash behaviour of aluminium cans for prismatic lithium-ion cells.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications