An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Suayip Toprakseven , Natesan Srinivasan
{"title":"An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes","authors":"Suayip Toprakseven ,&nbsp;Natesan Srinivasan","doi":"10.1016/j.apnum.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ln</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree <em>k</em>. Here <em>N</em> is the number mesh intervals. We conduct numerical examples to support our theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the weak Galerkin finite element method to solve a class of a third order singularly perturbed convection-diffusion differential equations. Using some knowledge on the exact solution, we prove a robust uniform convergence of order O(N(k1/2)) on the layer-adapted meshes including Bakhvalov-Shishkin type, and Bakhvalov-type and almost optimal uniform error estimates of order O((N1lnN)(k1/2)) on Shishkin-type mesh with respect to the perturbation parameter in the energy norm using high-order piecewise discontinuous polynomials of degree k. Here N is the number mesh intervals. We conduct numerical examples to support our theoretical results.

层适应网格上三阶奇异扰动对流扩散微分方程的高效弱 Galerkin 有限元模型
本文研究用弱 Galerkin 有限元方法求解一类三阶奇异扰动对流扩散微分方程。利用关于精确解的一些知识,我们证明了在层适应网格(包括 Bakhvalov-Shishkin 型和 Bakhvalov 型)上阶数为 O(N-(k-1/2))的稳健均匀收敛性,以及在 Shishkin 型网格上阶数为 O((N-1lnN)(k-1/2))的几乎最优均匀误差估计值。我们通过数值示例来支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信