{"title":"Gait classification of knee osteoarthritis patients using shoe-embedded internal measurement units sensor","authors":"Ahmed Raza , Yusuke Sekiguchi , Haruki Yaguchi , Keita Honda , Kenichiro Fukushi , Chenhui Huang , Kazuki Ihara , Yoshitaka Nozaki , Kentaro Nakahara , Shin-Ichi Izumi , Satoru Ebihara","doi":"10.1016/j.clinbiomech.2024.106285","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Knee osteoarthritis negatively affects the gait of patients, especially that of elderly people. However, the assessment of wearable sensors in knee osteoarthritis patients has been under-researched. During clinical assessments, patients may change their gait patterns under the placebo effect, whereas wearable sensors can be used in any environment.</p></div><div><h3>Methods</h3><p>Sixty patients with knee osteoarthritis and 20 control subjects were included in the study. Wearing shoes with an IMU sensor embedded in the insoles, the participants were required to walk along a walkway. The sensor data were collected during the gait. To discriminate between healthy and knee osteoarthritis patients and to classify different subgroups of knee osteoarthritis patients (patients scheduled for surgery vs. patients not scheduled for surgery; bilateral knee osteoarthritis diagnosis vs. unilateral knee osteoarthritis diagnosis), we used a machine learning approach called the support vector machine. A total of 88 features were extracted and used for classification.</p></div><div><h3>Findings</h3><p>The patients vs. healthy participants were classified with 71% accuracy, 85% sensitivity, and 56% specificity. The “patients scheduled for surgery” vs. “patients not scheduled for surgery” were classified with 83% accuracy, 83% sensitivity, and 81% specificity. The bilateral knee osteoarthritis diagnosis vs. unilateral knee osteoarthritis diagnosis was classified with 81% accuracy, 75% sensitivity, and 79% specificity.</p></div><div><h3>Interpretation</h3><p>Gait analysis using wearable sensors and machine learning can discriminate between healthy and knee osteoarthritis patients and classify different subgroups with reasonable accuracy, sensitivity, and specificity. The proposed approach requires no complex gait factors and is not limited to controlled laboratory settings.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324001177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Knee osteoarthritis negatively affects the gait of patients, especially that of elderly people. However, the assessment of wearable sensors in knee osteoarthritis patients has been under-researched. During clinical assessments, patients may change their gait patterns under the placebo effect, whereas wearable sensors can be used in any environment.
Methods
Sixty patients with knee osteoarthritis and 20 control subjects were included in the study. Wearing shoes with an IMU sensor embedded in the insoles, the participants were required to walk along a walkway. The sensor data were collected during the gait. To discriminate between healthy and knee osteoarthritis patients and to classify different subgroups of knee osteoarthritis patients (patients scheduled for surgery vs. patients not scheduled for surgery; bilateral knee osteoarthritis diagnosis vs. unilateral knee osteoarthritis diagnosis), we used a machine learning approach called the support vector machine. A total of 88 features were extracted and used for classification.
Findings
The patients vs. healthy participants were classified with 71% accuracy, 85% sensitivity, and 56% specificity. The “patients scheduled for surgery” vs. “patients not scheduled for surgery” were classified with 83% accuracy, 83% sensitivity, and 81% specificity. The bilateral knee osteoarthritis diagnosis vs. unilateral knee osteoarthritis diagnosis was classified with 81% accuracy, 75% sensitivity, and 79% specificity.
Interpretation
Gait analysis using wearable sensors and machine learning can discriminate between healthy and knee osteoarthritis patients and classify different subgroups with reasonable accuracy, sensitivity, and specificity. The proposed approach requires no complex gait factors and is not limited to controlled laboratory settings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.