{"title":"A modified fifth-order WENO-Z scheme based on the weights of the reformulated adaptive order WENO scheme","authors":"Yize Wang, Kunlei Zhao, Li Yuan","doi":"10.1002/fld.5314","DOIUrl":null,"url":null,"abstract":"<p>A modified fifth-order WENO-Z scheme is proposed by analogy with the non-normalized weights of the reformulated fifth-order adaptive order (AO) WENO scheme. We show that if the original fifth-order WENO-AO scheme is rewritten as the form of the conventional WENO combination, the resulting non-normalized weights can be divided into three parts: a constant one term, a local stencil smoothness measure term and a global stencil smoothness measure term. In order to make use of the latter two terms for constructing a modified WENO-Z scheme with enhanced performance, we change the form of the third term and introduce an adaptive scaling factor to adjust the contributions from the second and third terms. Numerical examples show that the modified fifth-order WENO-Z scheme has the advantage of high resolution in smooth regions and sharp capturing of discontinuities, and it can obtain evidently better results for shocked flows with small-scale structures compared with the recently developed WENO-Z+ and WENO-Z+M schemes.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 10","pages":"1631-1652"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5314","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A modified fifth-order WENO-Z scheme is proposed by analogy with the non-normalized weights of the reformulated fifth-order adaptive order (AO) WENO scheme. We show that if the original fifth-order WENO-AO scheme is rewritten as the form of the conventional WENO combination, the resulting non-normalized weights can be divided into three parts: a constant one term, a local stencil smoothness measure term and a global stencil smoothness measure term. In order to make use of the latter two terms for constructing a modified WENO-Z scheme with enhanced performance, we change the form of the third term and introduce an adaptive scaling factor to adjust the contributions from the second and third terms. Numerical examples show that the modified fifth-order WENO-Z scheme has the advantage of high resolution in smooth regions and sharp capturing of discontinuities, and it can obtain evidently better results for shocked flows with small-scale structures compared with the recently developed WENO-Z+ and WENO-Z+M schemes.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.