Analytical and Numerical Investigation for the Inhomogeneous Pantograph Equation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Faten Aldosari, A. Ebaid
{"title":"Analytical and Numerical Investigation for the Inhomogeneous Pantograph Equation","authors":"Faten Aldosari, A. Ebaid","doi":"10.3390/axioms13060377","DOIUrl":null,"url":null,"abstract":"This paper investigates the inhomogeneous version of the pantograph equation. The current model includes the exponential function as the inhomogeneous part of the pantograph equation. The Maclaurin series expansion (MSE) is a well-known standard method for solving initial value problems; it may be easier than any other approaches. Moreover, the MSE can be used in a straightforward manner in contrast to the other analytical methods. Thus, the MSE is extended in this paper to treat the inhomogeneous pantograph equation. The solution is obtained in a closed series form with an explicit formula for the series coefficients and the convergence of the series is proved. Also, the analytic solutions of some models in the literature are recovered as special cases of the present work. The accuracy of the results is examined through several comparisons with the available exact solutions of some classes in the relevant literature. Finally, the residuals are calculated and then used to validate the accuracy of the present approximations for some classes which have no exact solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13060377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the inhomogeneous version of the pantograph equation. The current model includes the exponential function as the inhomogeneous part of the pantograph equation. The Maclaurin series expansion (MSE) is a well-known standard method for solving initial value problems; it may be easier than any other approaches. Moreover, the MSE can be used in a straightforward manner in contrast to the other analytical methods. Thus, the MSE is extended in this paper to treat the inhomogeneous pantograph equation. The solution is obtained in a closed series form with an explicit formula for the series coefficients and the convergence of the series is proved. Also, the analytic solutions of some models in the literature are recovered as special cases of the present work. The accuracy of the results is examined through several comparisons with the available exact solutions of some classes in the relevant literature. Finally, the residuals are calculated and then used to validate the accuracy of the present approximations for some classes which have no exact solutions.
非均质受电弓方程的分析和数值研究
本文研究受电弓方程的非均质版本。当前模型包括指数函数作为受电弓方程的非均质部分。麦克劳林数列展开(MSE)是解决初值问题的著名标准方法;它可能比任何其他方法都更简单。此外,与其他分析方法相比,MSE 可以直接使用。因此,本文将 MSE 扩展用于处理非均质受电弓方程。解以闭包数列形式求得,并给出了数列系数的显式公式,同时证明了数列的收敛性。此外,文献中一些模型的解析解也作为本研究的特例得到了恢复。通过与相关文献中某些类别的现有精确解进行多次比较,检验了结果的准确性。最后,还计算了残差,并用残差来验证本近似方法对某些没有精确解的类别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信