Neungreuthai Chomchoei, P. Leelapornpisid, P. Tipduangta, J. Sirithunyalug, B. Sirithunyalug, Pawitrabhorn Samutrtai
{"title":"Electrospray-Mangiferin Nanoparticles Gel: A Promising Agent for Sun and Age Defense","authors":"Neungreuthai Chomchoei, P. Leelapornpisid, P. Tipduangta, J. Sirithunyalug, B. Sirithunyalug, Pawitrabhorn Samutrtai","doi":"10.3390/cosmetics11030093","DOIUrl":null,"url":null,"abstract":"UV irradiation causes skin damage and aging. This study aimed to develop and evaluate a gel formulation loaded with electrospray mangiferin nanoparticles (MNPs) as a double-action product with photoprotective and anti-aging properties. The MNPs were prepared using the electrospraying technique and loaded in a gel formulation. The MNP formulation was evaluated regarding its physical appearance, viscosity, in vitro sun protection factor (SPF), and in vitro anti-oxidant activity and compared with a formulation containing purified mangiferin (PM) at the same concentration of 0.2% (w/v). Moreover, both formulations were analyzed for their in vitro release and ex vivo skin permeation. The MNP formulation had a considerably higher SPF value than the PM formulation at the same concentration (20.43 ± 0.13 and 12.19 ± 0.27, respectively). The in vitro anti-oxidant activities of the formulations with MNPs and PM were 74.47 ± 2.19% and 80.52 ± 1.05%, respectively. The MNP formulation showed potent photoprotective and anti-oxidation activities with acceptable stability in all parameters under accelerated conditions (4 ± 2 °C 48 h/45 ± 2 °C 48 h for 6 cycles) and after 30 days of storage under various conditions. The release profile data of the MNPs showed a controlled release pattern at 76.97 ± 0.06% at 480 min. Furthermore, after using a Franz diffusion cell for 8 h, the MNP formulation showed the release of 37.01 ± 2.61% and 22.39 ± 1.59% of mangiferin content in the skin layer as stratum corneum and viable epidermis, respectively. Therefore, the overall results demonstrate that electrospray MNPs in a gel formulation are suitable for skin and constitute a promising delivery system for mangiferin in developing cosmetics and cosmeceutical products with good potential.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"309 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics11030093","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
UV irradiation causes skin damage and aging. This study aimed to develop and evaluate a gel formulation loaded with electrospray mangiferin nanoparticles (MNPs) as a double-action product with photoprotective and anti-aging properties. The MNPs were prepared using the electrospraying technique and loaded in a gel formulation. The MNP formulation was evaluated regarding its physical appearance, viscosity, in vitro sun protection factor (SPF), and in vitro anti-oxidant activity and compared with a formulation containing purified mangiferin (PM) at the same concentration of 0.2% (w/v). Moreover, both formulations were analyzed for their in vitro release and ex vivo skin permeation. The MNP formulation had a considerably higher SPF value than the PM formulation at the same concentration (20.43 ± 0.13 and 12.19 ± 0.27, respectively). The in vitro anti-oxidant activities of the formulations with MNPs and PM were 74.47 ± 2.19% and 80.52 ± 1.05%, respectively. The MNP formulation showed potent photoprotective and anti-oxidation activities with acceptable stability in all parameters under accelerated conditions (4 ± 2 °C 48 h/45 ± 2 °C 48 h for 6 cycles) and after 30 days of storage under various conditions. The release profile data of the MNPs showed a controlled release pattern at 76.97 ± 0.06% at 480 min. Furthermore, after using a Franz diffusion cell for 8 h, the MNP formulation showed the release of 37.01 ± 2.61% and 22.39 ± 1.59% of mangiferin content in the skin layer as stratum corneum and viable epidermis, respectively. Therefore, the overall results demonstrate that electrospray MNPs in a gel formulation are suitable for skin and constitute a promising delivery system for mangiferin in developing cosmetics and cosmeceutical products with good potential.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico