{"title":"Curvilinearity in the Reference Composite and Practical Implications for Measurement","authors":"Xiangyi Liao, Daniel M. Bolt, Jee-Seon Kim","doi":"10.1111/jedm.12402","DOIUrl":null,"url":null,"abstract":"<p>Item difficulty and dimensionality often correlate, implying that unidimensional IRT approximations to multidimensional data (i.e., reference composites) can take a curvilinear form in the multidimensional space. Although this issue has been previously discussed in the context of vertical scaling applications, we illustrate how such a phenomenon can also easily occur within individual tests. Measures of reading proficiency, for example, often use different task types within a single assessment, a feature that may not only lead to multidimensionality, but also an association between item difficulty and dimensionality. Using a latent regression strategy, we demonstrate through simulations and empirical analysis how associations between dimensionality and difficulty yield a nonlinear reference composite where the weights of the underlying dimensions <i>change</i> across the scale continuum according to the difficulties of the items associated with the dimensions. We further show how this form of curvilinearity produces systematic forms of misspecification in traditional unidimensional IRT models (e.g., 2PL) and can be better accommodated by models such as monotone-polynomial or asymmetric IRT models. Simulations and a real-data example from the Early Childhood Longitudinal Study—Kindergarten are provided for demonstration. Some implications for measurement modeling and for understanding the effects of 2PL misspecification on measurement metrics are discussed.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jedm.12402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12402","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Item difficulty and dimensionality often correlate, implying that unidimensional IRT approximations to multidimensional data (i.e., reference composites) can take a curvilinear form in the multidimensional space. Although this issue has been previously discussed in the context of vertical scaling applications, we illustrate how such a phenomenon can also easily occur within individual tests. Measures of reading proficiency, for example, often use different task types within a single assessment, a feature that may not only lead to multidimensionality, but also an association between item difficulty and dimensionality. Using a latent regression strategy, we demonstrate through simulations and empirical analysis how associations between dimensionality and difficulty yield a nonlinear reference composite where the weights of the underlying dimensions change across the scale continuum according to the difficulties of the items associated with the dimensions. We further show how this form of curvilinearity produces systematic forms of misspecification in traditional unidimensional IRT models (e.g., 2PL) and can be better accommodated by models such as monotone-polynomial or asymmetric IRT models. Simulations and a real-data example from the Early Childhood Longitudinal Study—Kindergarten are provided for demonstration. Some implications for measurement modeling and for understanding the effects of 2PL misspecification on measurement metrics are discussed.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.