The orthogonality principle for Osserman manifolds

Pub Date : 2024-06-05 DOI:10.1007/s10474-024-01434-x
V. Andrejić, K. Lukić
{"title":"The orthogonality principle for Osserman manifolds","authors":"V. Andrejić,&nbsp;K. Lukić","doi":"10.1007/s10474-024-01434-x","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new potential characterization of Osserman algebraic curvature tensors. \nAn algebraic curvature tensor is Jacobi-orthogonal if <span>\\(\\mathcal{J}_XY\\perp\\mathcal{J}_YX\\)</span> holds for all <span>\\(X\\perp Y\\)</span>,\nwhere <span>\\(\\mathcal{J}\\)</span> denotes the Jacobi operator.\nWe prove that any Jacobi-orthogonal tensor is Osserman, while all known Osserman tensors are Jacobi-orthogonal.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01434-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new potential characterization of Osserman algebraic curvature tensors. An algebraic curvature tensor is Jacobi-orthogonal if \(\mathcal{J}_XY\perp\mathcal{J}_YX\) holds for all \(X\perp Y\), where \(\mathcal{J}\) denotes the Jacobi operator. We prove that any Jacobi-orthogonal tensor is Osserman, while all known Osserman tensors are Jacobi-orthogonal.

分享
查看原文
奥瑟曼流形的正交原理
我们为奥瑟曼代数曲率张量引入了一个新的势特征。如果 \(\mathcal{J}_XY\perp\mathcal{J}_YX\) 对所有 \(X\perp Y\) 都成立,那么代数曲率张量就是雅各比正交的,其中 \(\mathcal{J}\) 表示雅各比算子。我们证明任何雅各比正交的张量都是奥瑟曼的,而所有已知的奥瑟曼张量都是雅各比正交的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信