A fault-tolerant and scalable boosting method over vertically partitioned data

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hai Jiang, Songtao Shang, Peng Liu, Tong Yi
{"title":"A fault-tolerant and scalable boosting method over vertically partitioned data","authors":"Hai Jiang,&nbsp;Songtao Shang,&nbsp;Peng Liu,&nbsp;Tong Yi","doi":"10.1049/cit2.12339","DOIUrl":null,"url":null,"abstract":"<p>Vertical federated learning (VFL) can learn a common machine learning model over vertically partitioned datasets. However, VFL are faced with these thorny problems: (1) both the training and prediction are very vulnerable to stragglers; (2) most VFL methods can only support a specific machine learning model. Suppose that VFL incorporates the features of centralised learning, then the above issues can be alleviated. With that in mind, this paper proposes a new VFL scheme, called FedBoost, which makes private parties upload the compressed partial order relations to the honest but curious server before training and prediction. The server can build a machine learning model and predict samples on the union of coded data. The theoretical analysis indicates that the absence of any private party will not affect the training and prediction as long as a round of communication is achieved. Our scheme can support canonical tree-based models such as Tree Boosting methods and Random Forests. The experimental results also demonstrate the availability of our scheme.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 5","pages":"1092-1100"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12339","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12339","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical federated learning (VFL) can learn a common machine learning model over vertically partitioned datasets. However, VFL are faced with these thorny problems: (1) both the training and prediction are very vulnerable to stragglers; (2) most VFL methods can only support a specific machine learning model. Suppose that VFL incorporates the features of centralised learning, then the above issues can be alleviated. With that in mind, this paper proposes a new VFL scheme, called FedBoost, which makes private parties upload the compressed partial order relations to the honest but curious server before training and prediction. The server can build a machine learning model and predict samples on the union of coded data. The theoretical analysis indicates that the absence of any private party will not affect the training and prediction as long as a round of communication is achieved. Our scheme can support canonical tree-based models such as Tree Boosting methods and Random Forests. The experimental results also demonstrate the availability of our scheme.

Abstract Image

垂直分区数据上的容错和可扩展提升方法
垂直联合学习(VFL)可以在垂直分割的数据集上学习一个通用的机器学习模型。然而,垂直联合学习面临着这些棘手的问题:(1)训练和预测都很容易受到散兵游勇的影响;(2)大多数垂直联合学习方法只能支持特定的机器学习模型。假设 VFL 结合了集中学习的特点,那么上述问题就可以得到缓解。有鉴于此,本文提出了一种新的 VFL 方案,称为 FedBoost,它让私人方在训练和预测前将压缩的部分秩关系上传到诚实但好奇的服务器。服务器可以建立机器学习模型,并对编码数据的联合样本进行预测。理论分析表明,只要实现一轮通信,没有任何私有方的存在不会影响训练和预测。我们的方案可以支持基于树的典型模型,如树提升法和随机森林。实验结果也证明了我们方案的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信