Metody spektrometrii mas oparte o dane (DDA) oraz metody niezależne od danych (DIA) wykorzystywane w analizie materiału biologicznego

Marta Nolka-Szaszner, Aleksander Strugała, Łukasz Marczak
{"title":"Metody spektrometrii mas oparte o dane (DDA) oraz metody niezależne od danych (DIA) wykorzystywane w analizie materiału biologicznego","authors":"Marta Nolka-Szaszner, Aleksander Strugała, Łukasz Marczak","doi":"10.18388/pb.2021_535","DOIUrl":null,"url":null,"abstract":"Mass spectrometry is an important tool in proteomic, metabolomic and lipidomic analysis. To fully use its potential, it is crucial to select and configure the appropriate analytical approach. For untargeted research, there are two main strategies available: data-dependent analysis (DDA) and data-independent analysis (DIA). Both methods differ in the way the analysis is carried out and in the degree of coverage of the obtained data, which is why each of them can be used in various types of research. The DDA method is based on continuous scanning of the analyzed ions, as a result of which the precursors with the highest intensity are fragmented in the MS2 mode. On the other hand, DIA, due to the use of combined ranges of precursor ion isolation, allows for a deeper analysis of the analyzed compounds. Both approaches also have modifications that improve their operation and enable obtaining more valuable data. Methods combining both techniques are also appearing on the horizon, such as DDIA, which uses the advantages of both methods, opening new analytical possibilities.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"55 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postępy Biochemii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18388/pb.2021_535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry is an important tool in proteomic, metabolomic and lipidomic analysis. To fully use its potential, it is crucial to select and configure the appropriate analytical approach. For untargeted research, there are two main strategies available: data-dependent analysis (DDA) and data-independent analysis (DIA). Both methods differ in the way the analysis is carried out and in the degree of coverage of the obtained data, which is why each of them can be used in various types of research. The DDA method is based on continuous scanning of the analyzed ions, as a result of which the precursors with the highest intensity are fragmented in the MS2 mode. On the other hand, DIA, due to the use of combined ranges of precursor ion isolation, allows for a deeper analysis of the analyzed compounds. Both approaches also have modifications that improve their operation and enable obtaining more valuable data. Methods combining both techniques are also appearing on the horizon, such as DDIA, which uses the advantages of both methods, opening new analytical possibilities.
用于分析生物材料的数据驱动(DDA)和数据无关(DIA)质谱方法
质谱法是蛋白质组、代谢组和脂质组分析的重要工具。要充分发挥其潜力,选择和配置适当的分析方法至关重要。对于非靶向研究,有两种主要策略可供选择:数据依赖分析(DDA)和数据独立分析(DIA)。这两种方法在进行分析的方式和所获数据的覆盖程度上各不相同,这也是为什么每种方法都可用于不同类型的研究。DDA 方法基于对分析离子的连续扫描,其结果是在 MS2 模式下对强度最高的前体进行碎裂。另一方面,由于使用了前体离子分离的组合范围,DIA 可以对所分析的化合物进行更深入的分析。这两种方法都有一些改进措施,以提高其操作性并获得更有价值的数据。结合这两种技术的方法也正在出现,如 DDIA,它利用了两种方法的优点,开辟了新的分析可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信