Augmenting agricultural sustainability: Investigating the role of agricultural land, green innovation, and food production in reducing greenhouse gas emissions
{"title":"Augmenting agricultural sustainability: Investigating the role of agricultural land, green innovation, and food production in reducing greenhouse gas emissions","authors":"K. Abbasi, Qingyu Zhang","doi":"10.1002/sd.3060","DOIUrl":null,"url":null,"abstract":"Sustainable agriculture practices are necessitated for environmental, population, and resource conservation. Embracing sustainability can enhance food security, preserve ecosystems, and help combat climate change, aligning with the United Nations Sustainable Development Goals (SDGs) such as SDGs 2, 7, and 13. Given that, the study explores agricultural land, green innovation, food production, renewable energy, and food trade openness impact on global greenhouse gas (GHG) emissions while interacting green innovation with agricultural land, for the top 20 agricultural countries from 1980 to 2021. The study utilized innovative methods including method of moments quantile regression, Dumitrescu, and Hurlin 2012 causality also for robustness DKSE, NWSE, and ridge regression applied. The findings unveil that agricultural land, green innovation, and food production escalate the GHG emissions throughout quantiles. While renewable energy, food trade openness, and interaction between green innovation and agricultural land reduce GHG emissions. Additionally, DH causality shows a bidirectional causal association among the variables. Whereas the robustness is confirmed by DKSE, NWSE, and ridge regression. This research significantly contributes to SDGs 2, 7, and 13, offering a comprehensive framework for crafting effective policies that balance productivity and environmental sustainability. As the world's top agricultural producers confront evolving global challenges, this study lays out a roadmap toward a resilient and ecologically conscientious future.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"69 4","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/sd.3060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable agriculture practices are necessitated for environmental, population, and resource conservation. Embracing sustainability can enhance food security, preserve ecosystems, and help combat climate change, aligning with the United Nations Sustainable Development Goals (SDGs) such as SDGs 2, 7, and 13. Given that, the study explores agricultural land, green innovation, food production, renewable energy, and food trade openness impact on global greenhouse gas (GHG) emissions while interacting green innovation with agricultural land, for the top 20 agricultural countries from 1980 to 2021. The study utilized innovative methods including method of moments quantile regression, Dumitrescu, and Hurlin 2012 causality also for robustness DKSE, NWSE, and ridge regression applied. The findings unveil that agricultural land, green innovation, and food production escalate the GHG emissions throughout quantiles. While renewable energy, food trade openness, and interaction between green innovation and agricultural land reduce GHG emissions. Additionally, DH causality shows a bidirectional causal association among the variables. Whereas the robustness is confirmed by DKSE, NWSE, and ridge regression. This research significantly contributes to SDGs 2, 7, and 13, offering a comprehensive framework for crafting effective policies that balance productivity and environmental sustainability. As the world's top agricultural producers confront evolving global challenges, this study lays out a roadmap toward a resilient and ecologically conscientious future.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.