Stratified ocean gyres with Stuart-type vortices

IF 1 3区 数学 Q1 MATHEMATICS
Qixing Ding, Luigi Roberti
{"title":"Stratified ocean gyres with Stuart-type vortices","authors":"Qixing Ding,&nbsp;Luigi Roberti","doi":"10.1007/s10231-024-01469-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the setting of the thin-shell approximation of the Euler equations in spherical coordinates for oceanic flows with variable density on the spinning Earth, we study a vorticity equation for a pseudo stream function <span>\\(\\psi \\)</span>, whereby the assumption of incompressibility allows us to express the density as a function of <span>\\(\\psi \\)</span>. Via an elliptic comparison argument, we show that, under certain assumptions, the (explicit) solution in the case of zero rate of rotation (i.e., on a fixed sphere) in a bounded region with smooth boundary contained either in the Northern or in the Southern Hemisphere is an approximation, in a suitable sense, of the corresponding solution of the equation with positive rate of rotation in the same region. This provides new insight into the dynamics of ocean gyres.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 6","pages":"2847 - 2862"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01469-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01469-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the setting of the thin-shell approximation of the Euler equations in spherical coordinates for oceanic flows with variable density on the spinning Earth, we study a vorticity equation for a pseudo stream function \(\psi \), whereby the assumption of incompressibility allows us to express the density as a function of \(\psi \). Via an elliptic comparison argument, we show that, under certain assumptions, the (explicit) solution in the case of zero rate of rotation (i.e., on a fixed sphere) in a bounded region with smooth boundary contained either in the Northern or in the Southern Hemisphere is an approximation, in a suitable sense, of the corresponding solution of the equation with positive rate of rotation in the same region. This provides new insight into the dynamics of ocean gyres.

Abstract Image

带有斯图尔特型漩涡的分层海洋涡旋
在旋转地球上密度可变的海洋流的球面坐标欧拉方程的薄壳近似设置中,我们研究了伪流函数 \(\psi \) 的涡度方程,其中不可压缩性假设允许我们将密度表示为 \(\psi \) 的函数。通过椭圆比较论证,我们表明,在某些假设条件下,在北半球或南半球包含的具有光滑边界的有界区域内,自转率为零(即在一个固定球体上)情况下的(显式)解在适当意义上是自转率为正的方程在同一区域内的相应解的近似值。这为了解海洋涡旋的动力学提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信