Eva Rodríguez-Velasco, Ignacio Peralta-Maraver, Andrés Martínez-García, Miriam García-Alguacil, Félix Picazo, Rodrigo J. Gonçalves, Cintia L. Ramón, Rafael Morales-Baquero, Francisco J. Rueda, Isabel Reche
{"title":"Idiosyncratic phenology of greenhouse gas emissions in a Mediterranean reservoir","authors":"Eva Rodríguez-Velasco, Ignacio Peralta-Maraver, Andrés Martínez-García, Miriam García-Alguacil, Félix Picazo, Rodrigo J. Gonçalves, Cintia L. Ramón, Rafael Morales-Baquero, Francisco J. Rueda, Isabel Reche","doi":"10.1002/lol2.10409","DOIUrl":null,"url":null,"abstract":"<p>Extreme hydrological and thermal regimes characterize the Mediterranean zone and can influence the phenology of greenhouse gas (GHG) emissions in reservoirs. Our study examined the seasonal changes in GHG emissions of a shallow, eutrophic, hardwater reservoir in Spain. We observed distinctive seasonal patterns for each gas. CH<sub>4</sub> emissions substantially increased during stratification, influenced predominantly by the increase in water temperature, net ecosystem production, and the decline in reservoir mean depth. N<sub>2</sub>O emissions mirrored CH<sub>4</sub>'s seasonal trend, significantly correlating to water temperature, wind speed, and gross primary production. Conversely, CO<sub>2</sub> emissions decreased during stratification and displayed a quadratic, rather than a linear relationship with water temperature—an unexpected deviation from CH<sub>4</sub> and N<sub>2</sub>O emission patterns—likely associated with photosynthetic uptake of bicarbonate and formation of intracellular calcite that might be exported to sediments. This investigation highlights the imperative of integrating these idiosyncratic patterns into GHG emissions models, enhancing their predictive power.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10409","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme hydrological and thermal regimes characterize the Mediterranean zone and can influence the phenology of greenhouse gas (GHG) emissions in reservoirs. Our study examined the seasonal changes in GHG emissions of a shallow, eutrophic, hardwater reservoir in Spain. We observed distinctive seasonal patterns for each gas. CH4 emissions substantially increased during stratification, influenced predominantly by the increase in water temperature, net ecosystem production, and the decline in reservoir mean depth. N2O emissions mirrored CH4's seasonal trend, significantly correlating to water temperature, wind speed, and gross primary production. Conversely, CO2 emissions decreased during stratification and displayed a quadratic, rather than a linear relationship with water temperature—an unexpected deviation from CH4 and N2O emission patterns—likely associated with photosynthetic uptake of bicarbonate and formation of intracellular calcite that might be exported to sediments. This investigation highlights the imperative of integrating these idiosyncratic patterns into GHG emissions models, enhancing their predictive power.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.