Dynamic Deformation Behavior of the Electron Beam Melted Ti-6Al-4V Alloy

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Hakan Hafizoglu, Firat Memu, Burcu Arslan Hamat, Huseyin Emrah Konokman, Nuri Durlu
{"title":"Dynamic Deformation Behavior of the Electron Beam Melted Ti-6Al-4V Alloy","authors":"Hakan Hafizoglu,&nbsp;Firat Memu,&nbsp;Burcu Arslan Hamat,&nbsp;Huseyin Emrah Konokman,&nbsp;Nuri Durlu","doi":"10.1007/s13369-024-09166-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, dynamic deformation behavior of electron beam melted Ti-6Al-4V alloy and effect of initial defects on deformation process of the alloy were investigated with high strain rate experimental and numerical studies. Dynamic compression tests at the strain rates of 350, 850, 1250, 1750, 1950, and 2500/s at room temperature and at higher temperatures of 150 and 240 °C were performed using a split-Hopkinson pressure bar. Compression simulations in three dimensions (3D) with LS-Dyna software were conducted using the determined Johnson–Cook parameters of the Ti-6Al-4V alloy specimens, to assess the strain, temperature distribution during deformation. In addition, simulation studies with initial defects in the model were performed to investigate the effect of these defects on strain formation during compression. The experimental results showed that strain rates over 1250/s caused failure at 45° to the loading direction. Adiabatic shear bands were observed for the specimens compressed at the strain rates of 1250/s and higher. As strain rate increased from 1250 to 2500/s, the type of adiabatic shear band altered from deformed to transformed type. The simulation results showed that initial defects in the specimen led to formation of higher plastic strain in the direction of 45° around initial defects. This high strain might be the cause of formation of adiabatic shear band. The simulation results also indicated that void morphology could affect strain distribution in the specimen.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 4","pages":"2541 - 2555"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13369-024-09166-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09166-4","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, dynamic deformation behavior of electron beam melted Ti-6Al-4V alloy and effect of initial defects on deformation process of the alloy were investigated with high strain rate experimental and numerical studies. Dynamic compression tests at the strain rates of 350, 850, 1250, 1750, 1950, and 2500/s at room temperature and at higher temperatures of 150 and 240 °C were performed using a split-Hopkinson pressure bar. Compression simulations in three dimensions (3D) with LS-Dyna software were conducted using the determined Johnson–Cook parameters of the Ti-6Al-4V alloy specimens, to assess the strain, temperature distribution during deformation. In addition, simulation studies with initial defects in the model were performed to investigate the effect of these defects on strain formation during compression. The experimental results showed that strain rates over 1250/s caused failure at 45° to the loading direction. Adiabatic shear bands were observed for the specimens compressed at the strain rates of 1250/s and higher. As strain rate increased from 1250 to 2500/s, the type of adiabatic shear band altered from deformed to transformed type. The simulation results showed that initial defects in the specimen led to formation of higher plastic strain in the direction of 45° around initial defects. This high strain might be the cause of formation of adiabatic shear band. The simulation results also indicated that void morphology could affect strain distribution in the specimen.

电子束熔化 Ti-6Al-4V 合金的动态变形行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信