M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume
{"title":"Thermal response of timber connections using densified wood dowels under fire","authors":"M. Khelifa, Trong Tuan Tran, A. Khennane, M. Oudjène, Y. Rogaume","doi":"10.1177/07349041241257262","DOIUrl":null,"url":null,"abstract":"A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241257262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A new type of timber connection using densified wood dowels is being developed and tested. The procedure involves inserting these densified dowels into pre-drilled holes. As this connection technique is in its early stages, a unique design approach is necessary, considering the impact of temperature variations. The primary goal is to characterize the thermal behaviour of these connections under elevated temperatures. The study employs an experimental approach, complemented by numerical analysis, innovatively applying kinetic models, commonly used for investigating heat-related biomass characteristics, to wood. The method requires the use of thermogravimetric analysis to identify the kinetic parameters. The proposed pyrolysis kinetic model has been implemented in the Abaqus/Implicit code via a user subroutine UMATHT. The study concludes that using kinetic models enhances accuracy by considering mass loss, a key factor influencing thermal properties. Simulation successfully replicates temperature distribution and charred layer thickness, crucial for designing timber structures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.