Size-Dependent Analysis of Piezoelectric–Elastic Bilayer Microbeams Based on General Strain Gradient Theory

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kanghui Wu, Shenjie Zhou, Zhenjie Zhang, Juanjuan Li
{"title":"Size-Dependent Analysis of Piezoelectric–Elastic Bilayer Microbeams Based on General Strain Gradient Theory","authors":"Kanghui Wu,&nbsp;Shenjie Zhou,&nbsp;Zhenjie Zhang,&nbsp;Juanjuan Li","doi":"10.1007/s10338-024-00492-6","DOIUrl":null,"url":null,"abstract":"<div><p>The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric microstructures due to the lack of material length-scale parameters. This study presents the constitutive relations of a piezoelectric material in terms of irreducible transversely isotropic tensors that include material length-scale parameters. Using these relations and the general strain gradient theory, a size-dependent bending model is proposed for a bilayer cantilever microbeam consisting of a transversely isotropic piezoelectric layer and an isotropic elastic layer. Analytical solutions are provided for bilayer cantilever microbeams subjected to force load and voltage load. The proposed model can be simplified to the model incorporating only partial strain gradient effects. This study examines the effect of strain gradient by comparing the normalized electric potentials and deflections of different models. Numerical results show that the proposed model effectively captures size effects in piezoelectric microbeams, whereas simplified models underestimate size effects due to ignoring partial strain gradient effects.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00492-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric microstructures due to the lack of material length-scale parameters. This study presents the constitutive relations of a piezoelectric material in terms of irreducible transversely isotropic tensors that include material length-scale parameters. Using these relations and the general strain gradient theory, a size-dependent bending model is proposed for a bilayer cantilever microbeam consisting of a transversely isotropic piezoelectric layer and an isotropic elastic layer. Analytical solutions are provided for bilayer cantilever microbeams subjected to force load and voltage load. The proposed model can be simplified to the model incorporating only partial strain gradient effects. This study examines the effect of strain gradient by comparing the normalized electric potentials and deflections of different models. Numerical results show that the proposed model effectively captures size effects in piezoelectric microbeams, whereas simplified models underestimate size effects due to ignoring partial strain gradient effects.

Abstract Image

基于一般应变梯度理论的压电弹性双层微梁尺寸依赖性分析
由于缺乏材料长度尺度参数,经典压电理论无法捕捉压电微结构的尺寸依赖性机电耦合行为。本研究通过包含材料长度尺度参数的不可还原横向各向同性张量,提出了压电材料的构成关系。利用这些关系和一般应变梯度理论,为由横向各向同性压电层和各向同性弹性层组成的双层悬臂微梁提出了与尺寸有关的弯曲模型。为承受力载荷和电压载荷的双层悬臂微梁提供了分析解决方案。提出的模型可简化为只包含部分应变梯度效应的模型。本研究通过比较不同模型的归一化电动势和挠度来研究应变梯度的影响。数值结果表明,提出的模型能有效捕捉压电微梁的尺寸效应,而简化模型由于忽略了部分应变梯度效应而低估了尺寸效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信