{"title":"p\n ∞\n \n $p^{\\infty }$\n -Selmer ranks of CM abelian varieties","authors":"Jamie Bell","doi":"10.1112/blms.13094","DOIUrl":null,"url":null,"abstract":"<p>For an elliptic curve with complex multiplication over a number field, the <span></span><math>\n <semantics>\n <msup>\n <mi>p</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$p^{\\infty }$</annotation>\n </semantics></math>-Selmer rank is even for all <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. Česnavičius proved this using the fact that <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math> admits a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-isogeny whenever <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> splits in the complex multiplication field, and invoking known cases of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-parity conjecture. We give a direct proof, and generalise the result to abelian varieties.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2711-2717"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an elliptic curve with complex multiplication over a number field, the -Selmer rank is even for all . Česnavičius proved this using the fact that admits a -isogeny whenever splits in the complex multiplication field, and invoking known cases of the -parity conjecture. We give a direct proof, and generalise the result to abelian varieties.