Cargo volume prediction of logistics sorting center based on GCN-BiLSTM

Huihui Guo, Yuehao Yang, Lishuo An
{"title":"Cargo volume prediction of logistics sorting center based on GCN-BiLSTM","authors":"Huihui Guo, Yuehao Yang, Lishuo An","doi":"10.61935/acetr.3.1.2024.p10","DOIUrl":null,"url":null,"abstract":"Taking into account the transport network and average cargo volume of each sorting center, a directed weighted graph is constructed in this paper. Next, the GCN model is used to extract the spatial characteristics of the transport connection information of the sorting center and input it into the BiLSTM network. The BiLSTM network uses the two-way information flow to learn the temporal characteristics, and then uses the GCN-BILSTM model combined with the spatio-temporal characteristics of the sorting center to predict the daily cargo volume in the next 30 days. The integrated learning model based on ARIMA and BiLSTM is then used to predict the next 30 days of hourly cargo volume, and adjust and optimize. The results show that GCN-BiLSTM model and BiLSTM model improve the prediction performance.","PeriodicalId":503577,"journal":{"name":"Advances in Computer and Engineering Technology Research","volume":"28 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computer and Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61935/acetr.3.1.2024.p10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Taking into account the transport network and average cargo volume of each sorting center, a directed weighted graph is constructed in this paper. Next, the GCN model is used to extract the spatial characteristics of the transport connection information of the sorting center and input it into the BiLSTM network. The BiLSTM network uses the two-way information flow to learn the temporal characteristics, and then uses the GCN-BILSTM model combined with the spatio-temporal characteristics of the sorting center to predict the daily cargo volume in the next 30 days. The integrated learning model based on ARIMA and BiLSTM is then used to predict the next 30 days of hourly cargo volume, and adjust and optimize. The results show that GCN-BiLSTM model and BiLSTM model improve the prediction performance.
基于 GCN-BiLSTM 的物流分拣中心货运量预测
考虑到每个分拣中心的运输网络和平均货运量,本文构建了一个有向加权图。然后,利用 GCN 模型提取分拣中心运输连接信息的空间特征,并将其输入 BiLSTM 网络。BiLSTM 网络利用双向信息流来学习时间特征,然后利用 GCN-BILSTM 模型结合分拣中心的时空特征来预测未来 30 天的日货运量。然后利用基于 ARIMA 和 BiLSTM 的综合学习模型预测未来 30 天的每小时货运量,并进行调整和优化。结果表明,GCN-BiLSTM 模型和 BiLSTM 模型提高了预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信