24.2% efficient POLO back junction solar cell with an AlOx/SiNy dielectric stack from an industrial-scale direct plasma-enhanced chemical vapor deposition system
{"title":"24.2% efficient POLO back junction solar cell with an AlOx/SiNy dielectric stack from an industrial-scale direct plasma-enhanced chemical vapor deposition system","authors":"Byungsul Min, Verena Mertens, Yevgeniya Larionova, Thomas Pernau, Helge Haverkamp, Thorsten Dullweber, Robby Peibst, Rolf Brendel","doi":"10.1002/pip.3828","DOIUrl":null,"url":null,"abstract":"<p>An aluminum oxide (AlO<sub>x</sub>)/silicon nitride (SiN<sub>y</sub>) dielectric stack was developed using an industrial plasma-enhanced chemical vapor deposition (PECVD) system with low-frequency (LF) plasma source for the surface passivation of undiffused textured p-type crystalline silicon. The median recombination current density is 4.3 fA cm<sup>−2</sup> as determined from photoconductance decay lifetime measurements and numerical device modeling. To the best of our knowledge, this is the first time to present a high-quality LF-PECVD AlO<sub>x</sub>/SiN<sub>y</sub> passivation stack on undiffused textured p-type crystalline silicon wafers, which are cleaned with industrial processes using HF, HCl, and O<sub>3</sub>. The simulation agrees well with the measured effective carrier lifetime if the velocity parameters of 5.6 cm s<sup>−1</sup> for holes and 803 cm s<sup>−1</sup> for electrons are applied with a fixed negative charge density of −3 × 10<sup>12</sup> cm<sup>−2</sup>. The process integration of developed AlO<sub>x</sub>/SiN<sub>y</sub> dielectric stack is successfully demonstrated by fabricating p-type back junction solar cells featuring a poly-Si-based passivating contact at the cell rear side. As the best cell efficiency, we achieve 24.2% with an open-circuit voltage of 725 mV on a M2-sized Ga-doped p-type Czochralski-grown Si wafer as independently confirmed by ISFH CalTeC.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"236-244"},"PeriodicalIF":8.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
An aluminum oxide (AlOx)/silicon nitride (SiNy) dielectric stack was developed using an industrial plasma-enhanced chemical vapor deposition (PECVD) system with low-frequency (LF) plasma source for the surface passivation of undiffused textured p-type crystalline silicon. The median recombination current density is 4.3 fA cm−2 as determined from photoconductance decay lifetime measurements and numerical device modeling. To the best of our knowledge, this is the first time to present a high-quality LF-PECVD AlOx/SiNy passivation stack on undiffused textured p-type crystalline silicon wafers, which are cleaned with industrial processes using HF, HCl, and O3. The simulation agrees well with the measured effective carrier lifetime if the velocity parameters of 5.6 cm s−1 for holes and 803 cm s−1 for electrons are applied with a fixed negative charge density of −3 × 1012 cm−2. The process integration of developed AlOx/SiNy dielectric stack is successfully demonstrated by fabricating p-type back junction solar cells featuring a poly-Si-based passivating contact at the cell rear side. As the best cell efficiency, we achieve 24.2% with an open-circuit voltage of 725 mV on a M2-sized Ga-doped p-type Czochralski-grown Si wafer as independently confirmed by ISFH CalTeC.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.