{"title":"Experimental and Regression Vapor–liquid Equilibrium Data for Ethanol + Dipropylene Glycol Binary System","authors":"Marilena Nicolae, Elena M. Fendu","doi":"10.3311/ppch.23426","DOIUrl":null,"url":null,"abstract":"Ethanol is one of the most utilized additives in gasoline, and its obtaining and separation from regenerable resources is of great interest. Despite the enormous energy consumption, extractive and azeotropic distillation is still preferred for ethanol anhydrization. This work studies the utilization of dipropylene glycol (DPG) as an extractive agent. The vapor–liquid equilibrium (VLE) data for the ethanol + DPG binary system was experimentally determined and the VLE data obtained were regressed using Non-Random Two Liquid (NRTL) and Universal Quasi Chemical (UNIQUAC) thermodynamic models in PRO/II 2020 simulation software. The binary interaction parameters obtained from regression were used to simulate the water + ethanol separation by extractive distillation with DPG. There were realized a series of several simulations, using different solvent/feed ratios in the extractive distillation column, starting from two basic variants: variant A, where no heat recovery is considered, and variant B, where the heat of the hot streams in the process flow diagram (PFD) is recovered in three heat exchangers. The specific energy consumption (SEC) expressed as MJ/kg of anhydrous ethanol were calculated for each variant. It was found that the most economical is variant B which for the SEC is 7.53 MJ/kg of anhydrous ethanol. The SEC calculated for the best variant in this study is lower than the SEC calculated by other researchers for similar processes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.23426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethanol is one of the most utilized additives in gasoline, and its obtaining and separation from regenerable resources is of great interest. Despite the enormous energy consumption, extractive and azeotropic distillation is still preferred for ethanol anhydrization. This work studies the utilization of dipropylene glycol (DPG) as an extractive agent. The vapor–liquid equilibrium (VLE) data for the ethanol + DPG binary system was experimentally determined and the VLE data obtained were regressed using Non-Random Two Liquid (NRTL) and Universal Quasi Chemical (UNIQUAC) thermodynamic models in PRO/II 2020 simulation software. The binary interaction parameters obtained from regression were used to simulate the water + ethanol separation by extractive distillation with DPG. There were realized a series of several simulations, using different solvent/feed ratios in the extractive distillation column, starting from two basic variants: variant A, where no heat recovery is considered, and variant B, where the heat of the hot streams in the process flow diagram (PFD) is recovered in three heat exchangers. The specific energy consumption (SEC) expressed as MJ/kg of anhydrous ethanol were calculated for each variant. It was found that the most economical is variant B which for the SEC is 7.53 MJ/kg of anhydrous ethanol. The SEC calculated for the best variant in this study is lower than the SEC calculated by other researchers for similar processes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.