One-Loop Effective Potential in Scherk–Schwarz Compactifications of Pure d = 5 $d=5$ Supergravities

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Gianguido Dall'Agata, Fabio Zwirner
{"title":"One-Loop Effective Potential in Scherk–Schwarz Compactifications of Pure \n \n \n d\n =\n 5\n \n $d=5$\n Supergravities","authors":"Gianguido Dall'Agata,&nbsp;Fabio Zwirner","doi":"10.1002/prop.202400087","DOIUrl":null,"url":null,"abstract":"<p>We perform a systematic analysis of the one-loop effective potential of pure <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$d=5$</annotation>\n </semantics></math> supergravities, with supersymmetry fully broken by a Scherk–Schwarz compactification on the circle, as a function of the radial modulus. We discuss the precise correspondence between the effective potential <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>1</mn>\n </msub>\n <annotation>$V_1$</annotation>\n </semantics></math> in the full compactified theory and its counterpart <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n </msub>\n <annotation>$V_{1,red}$</annotation>\n </semantics></math> in the reduced theory. We confirm that <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>1</mn>\n </msub>\n <annotation>$V_1$</annotation>\n </semantics></math> is finite for any <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$N&amp;gt;0$</annotation>\n </semantics></math>, in contrast to <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mi>e</mi>\n <mi>d</mi>\n </mrow>\n </msub>\n <annotation>$V_{1,red}$</annotation>\n </semantics></math>. We find that for broken <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$N=8$</annotation>\n </semantics></math> supergravity <span></span><math>\n <semantics>\n <msub>\n <mi>V</mi>\n <mn>1</mn>\n </msub>\n <annotation>$V_1$</annotation>\n </semantics></math> is negative definite even after accounting for the Kaluza–Klein states. We outline a program for future work where the study of a different kind of Scherk-Schwarz compactifications, still at the field theory level but with at least three extra dimensions, could lead to qualitatively new results.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 7-8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400087","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a systematic analysis of the one-loop effective potential of pure d = 5 $d=5$ supergravities, with supersymmetry fully broken by a Scherk–Schwarz compactification on the circle, as a function of the radial modulus. We discuss the precise correspondence between the effective potential V 1 $V_1$ in the full compactified theory and its counterpart V 1 , r e d $V_{1,red}$ in the reduced theory. We confirm that V 1 $V_1$ is finite for any N > 0 $N&gt;0$ , in contrast to V 1 , r e d $V_{1,red}$ . We find that for broken N = 8 $N=8$ supergravity V 1 $V_1$ is negative definite even after accounting for the Kaluza–Klein states. We outline a program for future work where the study of a different kind of Scherk-Schwarz compactifications, still at the field theory level but with at least three extra dimensions, could lead to qualitatively new results.

纯 d=5$d=5$ 超引力的舍克-施瓦茨紧凑中的一环有效势能
我们对纯超重的一环有效势进行了系统分析,超对称被圆上的舍克-施瓦茨致密化完全打破,有效势是径向模量的函数。我们讨论了完全致密化理论中的有效势与还原理论中的有效势之间的精确对应关系。我们证实,对于任何Ⅳ,有效势都是有限的,而对于Ⅴ,有效势则是有限的。 我们发现,对于破碎超引力,即使考虑了卡卢扎-克莱因态,有效势也是负定的。我们概述了未来的工作计划,即研究不同类型的舍尔克-施瓦茨致密化,仍然是在场论层面,但至少有三个额外维度,这可能会带来质的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信