{"title":"Real-time hybrid method for maneuver detection and estimation of non-cooperative space targets","authors":"Peng Zhang, Di Wu, Hexi Baoyin","doi":"10.1007/s42064-024-0203-y","DOIUrl":null,"url":null,"abstract":"<div><p>A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study. The optical measurements, together with the range and range rate measurements from the ground-based radars, were used in the tracking scenarios. In many tracking scenarios, radar resources for non-cooperative targets are constrained, particularly for near-earth targets, where multiple objects can only be tracked by a single radar at a time. This limitation hinders the accurate estimation of noncooperative target maneuvers, and can at times result in target loss. Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods. To address this problem, a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented. Simulation results demonstrate that the proposed method outperforms the previous method, offering more accurate and efficient estimations.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0203-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study. The optical measurements, together with the range and range rate measurements from the ground-based radars, were used in the tracking scenarios. In many tracking scenarios, radar resources for non-cooperative targets are constrained, particularly for near-earth targets, where multiple objects can only be tracked by a single radar at a time. This limitation hinders the accurate estimation of noncooperative target maneuvers, and can at times result in target loss. Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods. To address this problem, a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented. Simulation results demonstrate that the proposed method outperforms the previous method, offering more accurate and efficient estimations.
期刊介绍:
Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.