{"title":"Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems","authors":"Alessio Medaglini, Sandro Bartolini","doi":"10.1145/3672359.3672374","DOIUrl":null,"url":null,"abstract":"Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.","PeriodicalId":330677,"journal":{"name":"ACM Sigada Ada Letters","volume":"9 3‐4","pages":"89 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigada Ada Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3672359.3672374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.