Early detection of dementia with default-mode network effective connectivity

Sam Ereira, Sheena Waters, Adeel Razi, Charles R. Marshall
{"title":"Early detection of dementia with default-mode network effective connectivity","authors":"Sam Ereira, Sheena Waters, Adeel Razi, Charles R. Marshall","doi":"10.1038/s44220-024-00259-5","DOIUrl":null,"url":null,"abstract":"Altered functional connectivity precedes structural brain changes and symptoms in dementia. Alzheimer’s disease is the largest contributor to dementia at the population level, and disrupts functional connectivity in the brain’s default-mode network (DMN). We investigated whether a neurobiological model of DMN effective connectivity could predict a future dementia diagnosis at the single-participant level. We applied spectral dynamic causal modeling to resting-state functional magnetic resonance imaging data in a nested case–control group from the UK Biobank, including 81 undiagnosed individuals who developed dementia up to nine years after imaging, and 1,030 matched controls. Dysconnectivity predicted both future dementia incidence (AUC = 0.82) and time to diagnosis (R = 0.53), outperforming models based on brain structure and functional connectivity. We also evaluated associations between DMN dysconnectivity and major risk factors for dementia, revealing strong relationships with polygenic risk for Alzheimer’s disease and social isolation. Neurobiological models of effective connectivity may facilitate early detection of dementia at population level, supporting rational deployment of targeted dementia-prevention strategies. Altered patterns of effective connectivity in the brain’s default-mode network predicted both future dementia incidence and time to diagnosis.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"2 7","pages":"787-800"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44220-024-00259-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00259-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Altered functional connectivity precedes structural brain changes and symptoms in dementia. Alzheimer’s disease is the largest contributor to dementia at the population level, and disrupts functional connectivity in the brain’s default-mode network (DMN). We investigated whether a neurobiological model of DMN effective connectivity could predict a future dementia diagnosis at the single-participant level. We applied spectral dynamic causal modeling to resting-state functional magnetic resonance imaging data in a nested case–control group from the UK Biobank, including 81 undiagnosed individuals who developed dementia up to nine years after imaging, and 1,030 matched controls. Dysconnectivity predicted both future dementia incidence (AUC = 0.82) and time to diagnosis (R = 0.53), outperforming models based on brain structure and functional connectivity. We also evaluated associations between DMN dysconnectivity and major risk factors for dementia, revealing strong relationships with polygenic risk for Alzheimer’s disease and social isolation. Neurobiological models of effective connectivity may facilitate early detection of dementia at population level, supporting rational deployment of targeted dementia-prevention strategies. Altered patterns of effective connectivity in the brain’s default-mode network predicted both future dementia incidence and time to diagnosis.

Abstract Image

通过默认模式网络有效连接早期发现痴呆症
功能连接的改变先于大脑结构的变化和痴呆症的症状。阿尔茨海默病是导致人群痴呆的最大因素,它破坏了大脑默认模式网络(DMN)的功能连接。我们研究了 DMN 有效连接的神经生物学模型能否在单个参与者水平上预测未来痴呆症的诊断。我们将频谱动态因果建模应用于英国生物库中一个嵌套病例对照组的静息态功能磁共振成像数据,其中包括81名未确诊的患者,他们在成像后9年内患上了痴呆症,以及1,030名匹配的对照组患者。连接异常可预测未来痴呆症的发病率(AUC = 0.82)和诊断时间(R = 0.53),优于基于大脑结构和功能连接的模型。我们还评估了DMN连通性障碍与痴呆症主要风险因素之间的关系,结果显示,DMN连通性障碍与阿尔茨海默病的多基因风险和社会隔离有密切关系。有效连通性的神经生物学模型可能有助于在人群水平上及早发现痴呆症,支持有针对性的痴呆症预防策略的合理部署。大脑默认模式网络中有效连接模式的改变可预测未来痴呆症的发病率和确诊时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信