Vanessa Ferreira, O. Bonfim, L. Mortarini, R. H. Valdes, Felipe Denardin Costa, Rafael Maroneze
{"title":"Atmospheric Blocking Events over the Southeast Pacific and Southwest Atlantic Oceans in the CMIP6 Present-Day Climate","authors":"Vanessa Ferreira, O. Bonfim, L. Mortarini, R. H. Valdes, Felipe Denardin Costa, Rafael Maroneze","doi":"10.3390/cli12060084","DOIUrl":null,"url":null,"abstract":"This study examines the representation of blocking events in the Southeast Pacific and Southwest Atlantic regions using a set of 13 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Historical runs were employed to analyze blocking conditions in the recent past climate, spanning from 1985 to 2014, with ERA5 data utilized to represent observed blocking events. The majority of CMIP6 models underestimate the total number of blocking events in the Southeast Pacific. The MPI–ESM1–2–HR and MPI–ESM1–2–LR models come closest to replicating the number of blocking events observed in ERA5, with underestimations of approximately −10% and −9%, respectively. Nonetheless, these models successfully capture the seasonality and overall duration of blocking events, as well as accurately represent the position of blocking heights over the Southeast Pacific. Conversely, CMIP6 models perform poorly in representing blocking climatology in the Southwest Atlantic. These models both overestimate and underestimate the total number of blocking events by more than 25% compared to ERA5. Furthermore, they struggle to reproduce the seasonal distribution of blockings and face challenges in accurately representing the duration of blocking events observed in ERA5.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"138 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12060084","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the representation of blocking events in the Southeast Pacific and Southwest Atlantic regions using a set of 13 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Historical runs were employed to analyze blocking conditions in the recent past climate, spanning from 1985 to 2014, with ERA5 data utilized to represent observed blocking events. The majority of CMIP6 models underestimate the total number of blocking events in the Southeast Pacific. The MPI–ESM1–2–HR and MPI–ESM1–2–LR models come closest to replicating the number of blocking events observed in ERA5, with underestimations of approximately −10% and −9%, respectively. Nonetheless, these models successfully capture the seasonality and overall duration of blocking events, as well as accurately represent the position of blocking heights over the Southeast Pacific. Conversely, CMIP6 models perform poorly in representing blocking climatology in the Southwest Atlantic. These models both overestimate and underestimate the total number of blocking events by more than 25% compared to ERA5. Furthermore, they struggle to reproduce the seasonal distribution of blockings and face challenges in accurately representing the duration of blocking events observed in ERA5.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico