Vanessa Ferreira, O. Bonfim, L. Mortarini, R. H. Valdes, Felipe Denardin Costa, Rafael Maroneze
{"title":"Atmospheric Blocking Events over the Southeast Pacific and Southwest Atlantic Oceans in the CMIP6 Present-Day Climate","authors":"Vanessa Ferreira, O. Bonfim, L. Mortarini, R. H. Valdes, Felipe Denardin Costa, Rafael Maroneze","doi":"10.3390/cli12060084","DOIUrl":null,"url":null,"abstract":"This study examines the representation of blocking events in the Southeast Pacific and Southwest Atlantic regions using a set of 13 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Historical runs were employed to analyze blocking conditions in the recent past climate, spanning from 1985 to 2014, with ERA5 data utilized to represent observed blocking events. The majority of CMIP6 models underestimate the total number of blocking events in the Southeast Pacific. The MPI–ESM1–2–HR and MPI–ESM1–2–LR models come closest to replicating the number of blocking events observed in ERA5, with underestimations of approximately −10% and −9%, respectively. Nonetheless, these models successfully capture the seasonality and overall duration of blocking events, as well as accurately represent the position of blocking heights over the Southeast Pacific. Conversely, CMIP6 models perform poorly in representing blocking climatology in the Southwest Atlantic. These models both overestimate and underestimate the total number of blocking events by more than 25% compared to ERA5. Furthermore, they struggle to reproduce the seasonal distribution of blockings and face challenges in accurately representing the duration of blocking events observed in ERA5.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12060084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the representation of blocking events in the Southeast Pacific and Southwest Atlantic regions using a set of 13 global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). Historical runs were employed to analyze blocking conditions in the recent past climate, spanning from 1985 to 2014, with ERA5 data utilized to represent observed blocking events. The majority of CMIP6 models underestimate the total number of blocking events in the Southeast Pacific. The MPI–ESM1–2–HR and MPI–ESM1–2–LR models come closest to replicating the number of blocking events observed in ERA5, with underestimations of approximately −10% and −9%, respectively. Nonetheless, these models successfully capture the seasonality and overall duration of blocking events, as well as accurately represent the position of blocking heights over the Southeast Pacific. Conversely, CMIP6 models perform poorly in representing blocking climatology in the Southwest Atlantic. These models both overestimate and underestimate the total number of blocking events by more than 25% compared to ERA5. Furthermore, they struggle to reproduce the seasonal distribution of blockings and face challenges in accurately representing the duration of blocking events observed in ERA5.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.