{"title":"Role of layer thickness on the damage mechanism in the LPBFed copper alloy","authors":"M. Saravana Kumar, N. Jeyaprakash, Che-Hua Yang","doi":"10.1007/s43452-024-00983-w","DOIUrl":null,"url":null,"abstract":"<div><p>Parts with interior voids created by the LPBF process are known to have the potential to cause fracture when subjected to mechanical loading. In this research, the key process parameters such as laser thickness (LT), scanning speed (SS), and laser power (LP) were taken into consideration to avoid the void formations which was the major reason for affecting the structural integrity. So, void formations (V), ultimate tensile strength (UTS) and reduced modulus (RM) were considered as the response parameters in this study. The entropy-associated weighted aggregated sum product assessment (WASPAS) approach was implemented to examine the favorable conditions which substantiated that the LT is the most influential parameter in nucleation of voids. The verification experiments prove that the void formation was reduced by 98.6% and the UTS and RM were enhanced by 52.17 and 31.7%.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-00983-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Parts with interior voids created by the LPBF process are known to have the potential to cause fracture when subjected to mechanical loading. In this research, the key process parameters such as laser thickness (LT), scanning speed (SS), and laser power (LP) were taken into consideration to avoid the void formations which was the major reason for affecting the structural integrity. So, void formations (V), ultimate tensile strength (UTS) and reduced modulus (RM) were considered as the response parameters in this study. The entropy-associated weighted aggregated sum product assessment (WASPAS) approach was implemented to examine the favorable conditions which substantiated that the LT is the most influential parameter in nucleation of voids. The verification experiments prove that the void formation was reduced by 98.6% and the UTS and RM were enhanced by 52.17 and 31.7%.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.