{"title":"A Priori Estimates for the Motion of Charged Liquid Drop: A Dynamic Approach via Free Boundary Euler Equations","authors":"Vesa Julin, Domenico Angelo La Manna","doi":"10.1007/s00021-024-00883-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains <span>\\(C^{1,\\alpha }\\)</span>-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., <span>\\(C^\\infty \\)</span> in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the <span>\\(C^{1,\\alpha }\\)</span>-regularity assumption to be optimal. We also quantify the <span>\\(C^\\infty \\)</span>-regularity via high order energy estimates which, in particular, implies the well-posedness of the problem.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00883-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00883-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conical singularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posedness of the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains \(C^{1,\alpha }\)-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., \(C^\infty \) in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the \(C^{1,\alpha }\)-regularity assumption to be optimal. We also quantify the \(C^\infty \)-regularity via high order energy estimates which, in particular, implies the well-posedness of the problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.