The potential of SMOTHE to enhance the precision of gender prediction: an investigation of artificial neural networks with cephalometry determination

Vitria Wuri Handayani, Ahmad Yudianto, Mieke Sylvia M.A.R., R. Rulaningtyas, Muhammad Rasyad Caesarardhi, Ramadhan Hardani Putra
{"title":"The potential of SMOTHE to enhance the precision of gender prediction: an investigation of artificial neural networks with cephalometry determination","authors":"Vitria Wuri Handayani, Ahmad Yudianto, Mieke Sylvia M.A.R., R. Rulaningtyas, Muhammad Rasyad Caesarardhi, Ramadhan Hardani Putra","doi":"10.17816/fm16110","DOIUrl":null,"url":null,"abstract":"Background: When creating models utilizing artificial neural networks (ANN), it is crucial to consider the quantity of training data and the distribution of data, particularly when making gender predictions. \nObjectives: This study seeks to determine the potential impact of using Synthetic Minority Oversampling Technique (SMOTE) on gender prediction using ANN model. \nMaterial and Method: The current study utilized a dataset consisting of 297 Indonesian cephalometric measurements, comprising 229 samples from females and 68 samples from males. Web ceph is using for measures parameters SNA angle, mandibular length, mandibular angle, and SGA angle and diagnosis. Data processing and model ANN creation were carried out using Python. \nResult: The gender identification accuracy of the artificial neural network (ANN) model is 87% for females and 0% for males, resulting in an overall average accuracy of 78%. When using SMOTE, the accuracy is 22%, with 0% accuracy for females and 37% accuracy for males. However, when using SMOTE and normalization, the accuracy increases to 71%, with 82% accuracy for females and 30% accuracy for males. The accuracy of normalization without SMOTE is 76%, with 86% accuracy for females and 14% accuracy for males. \nConclusion: Research has proven the efficacy of SMOTE in improving the classification of malematrices. Nevertheless, the study reveals that the overall accuracy results of SMOTE are suboptimal in comparison to the absence of SMOTE and normalization. The application of data balancing strategies is necessary in order to achieve optimal accuracy in gender prediction when ANN, and other parameters must be applied.","PeriodicalId":346404,"journal":{"name":"Russian Journal of Forensic Medicine","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Forensic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/fm16110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: When creating models utilizing artificial neural networks (ANN), it is crucial to consider the quantity of training data and the distribution of data, particularly when making gender predictions. Objectives: This study seeks to determine the potential impact of using Synthetic Minority Oversampling Technique (SMOTE) on gender prediction using ANN model. Material and Method: The current study utilized a dataset consisting of 297 Indonesian cephalometric measurements, comprising 229 samples from females and 68 samples from males. Web ceph is using for measures parameters SNA angle, mandibular length, mandibular angle, and SGA angle and diagnosis. Data processing and model ANN creation were carried out using Python. Result: The gender identification accuracy of the artificial neural network (ANN) model is 87% for females and 0% for males, resulting in an overall average accuracy of 78%. When using SMOTE, the accuracy is 22%, with 0% accuracy for females and 37% accuracy for males. However, when using SMOTE and normalization, the accuracy increases to 71%, with 82% accuracy for females and 30% accuracy for males. The accuracy of normalization without SMOTE is 76%, with 86% accuracy for females and 14% accuracy for males. Conclusion: Research has proven the efficacy of SMOTE in improving the classification of malematrices. Nevertheless, the study reveals that the overall accuracy results of SMOTE are suboptimal in comparison to the absence of SMOTE and normalization. The application of data balancing strategies is necessary in order to achieve optimal accuracy in gender prediction when ANN, and other parameters must be applied.
SMOTHE提高性别预测精确度的潜力:人工神经网络与头颅测量测定的研究
背景:在利用人工神经网络(ANN)创建模型时,考虑训练数据的数量和数据分布至关重要,尤其是在进行性别预测时。研究目的本研究旨在确定使用合成少数群体过度取样技术(SMOTE)对使用人工神经网络模型进行性别预测的潜在影响。材料和方法:本研究使用的数据集由 297 个印度尼西亚头颅测量数据组成,其中包括 229 个女性样本和 68 个男性样本。Web ceph 用于测量参数 SNA 角、下颌长度、下颌角、SGA 角和诊断。数据处理和 ANN 模型创建使用 Python 进行。结果人工神经网络(ANN)模型的性别识别准确率女性为 87%,男性为 0%,总体平均准确率为 78%。使用 SMOTE 时,准确率为 22%,其中女性准确率为 0%,男性准确率为 37%。然而,当使用 SMOTE 和归一化时,准确率提高到 71%,其中女性的准确率为 82%,男性的准确率为 30%。不使用 SMOTE 的归一化准确率为 76%,女性准确率为 86%,男性准确率为 14%。结论研究证明了 SMOTE 在改进恶性肿瘤分类方面的功效。然而,研究显示,与没有 SMOTE 和归一化相比,SMOTE 的总体准确率结果并不理想。在必须应用 ANN 和其他参数时,为了使性别预测达到最佳准确度,有必要应用数据平衡策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信