Yanxia Cheng, Qiao Wang, Linxi Yang, Quanzi Li, Xiaojing Yan
{"title":"MiR319a-mediated salt stress response in poplar","authors":"Yanxia Cheng, Qiao Wang, Linxi Yang, Quanzi Li, Xiaojing Yan","doi":"10.1093/hr/uhae157","DOIUrl":null,"url":null,"abstract":"\n Maintenance of intracellular ion balance, especially Na+ and K+, plays an important role in plant responses to salt stress. Vessels in xylem are responsible for long-distance ion transport in vascular plants. Knowledge on the salt stress response in woody plants in limited. In this study, we identified miR319a as an important regulator in respond to salt stress in poplar. miR319a overexpression transgenic poplar showed a salt-tolerant phenotype, and cytological observation showed reduced cambium cell layers, wider xylem, increased number and lumen area of vessels and fibers, and thinner cell wall thickness in the transgenics. While miR319a-MIMIC plants had opposite phenotypes, with narrower xylem, reduced number and lumen area of vessels and fibers cells, and increased wall thickness. In addition, overexpression of miR319a driven by the vessel-specific promoter significantly improved the salt tolerance than by the fiber-specific promoter. The expression levels of PagHKT1;2 and PagSKOR1-b, which encoded high-affinity K+ and Na+ transporters for Na+ efflux and K+ influx, respectively, were positively correlated with the vessel number and lumen area. These results suggest that miR319 not only promotes ion transport rates by increasing vessel number and lumen area and reducing cell wall thickness, but also regulates the concentrations of Na+ and K+ in the xylem by up-regulating PagHKT1;2 and PagSKOR1-b. We demonstrate that miR319 coordinates the response of poplar to salt stress may through both mechanisms, enriching our understanding of the synergistic effects of the secondary xylem structure and long-distance ion transport balance in the salt tolerance of poplar.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" 117","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae157","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Maintenance of intracellular ion balance, especially Na+ and K+, plays an important role in plant responses to salt stress. Vessels in xylem are responsible for long-distance ion transport in vascular plants. Knowledge on the salt stress response in woody plants in limited. In this study, we identified miR319a as an important regulator in respond to salt stress in poplar. miR319a overexpression transgenic poplar showed a salt-tolerant phenotype, and cytological observation showed reduced cambium cell layers, wider xylem, increased number and lumen area of vessels and fibers, and thinner cell wall thickness in the transgenics. While miR319a-MIMIC plants had opposite phenotypes, with narrower xylem, reduced number and lumen area of vessels and fibers cells, and increased wall thickness. In addition, overexpression of miR319a driven by the vessel-specific promoter significantly improved the salt tolerance than by the fiber-specific promoter. The expression levels of PagHKT1;2 and PagSKOR1-b, which encoded high-affinity K+ and Na+ transporters for Na+ efflux and K+ influx, respectively, were positively correlated with the vessel number and lumen area. These results suggest that miR319 not only promotes ion transport rates by increasing vessel number and lumen area and reducing cell wall thickness, but also regulates the concentrations of Na+ and K+ in the xylem by up-regulating PagHKT1;2 and PagSKOR1-b. We demonstrate that miR319 coordinates the response of poplar to salt stress may through both mechanisms, enriching our understanding of the synergistic effects of the secondary xylem structure and long-distance ion transport balance in the salt tolerance of poplar.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture