Jesus D. Castaño, Drew A. Hauge, Steven J. Severtson, Jiwei Zhang
{"title":"Assessment of Fungal Decomposition Strategies as a Step Towards the Development of Sustainable Pressure Sensitive Adhesives","authors":"Jesus D. Castaño, Drew A. Hauge, Steven J. Severtson, Jiwei Zhang","doi":"10.1007/s10924-024-03329-y","DOIUrl":null,"url":null,"abstract":"<div><p>Water-based pressure-sensitive adhesives (PSAs) are widely used for different applications due to their cost and convenience. However, their synthesis relies on petroleum-based acrylic monomers, which negatively affects their biodegradability and recyclability. Hybrid acrylic polymers combining acrylic monomers and acrylate-functionalized lactide-based macromonomers could help solve this issue. Recently, we reported on the remarkable biodegradability of these hybrid PSAs in their latex format when using fungal treatments. In this study, we focused on the degradation of dried PSA films, a prevalent application format in commercial settings, by utilizing fungal consortia and solid-state fermentation. Our findings indicated that the type of fungal treatment, carbon source provided, and substrate thickness significantly affected biodegradation rates. The co-culture of <i>Pestalotiopsis microspora</i> and <i>Trametes versicolor</i> demonstrated particularly promising results, achieving degradation rates exceeding 50%, notably, when utilizing wheat bran as a carbon source. Moreover, the renewal of culture media and inoculum further amplified PSA biodegradation. These results underscore the potential of fungal consortia in solid-state cultures to substantially enhance the biodegradation of hybrid acrylic PSA films, offering insights for the design of more sustainable adhesive bio-based products and finally leading to an environmentally responsible end of the PSAs lifecycle.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03329-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water-based pressure-sensitive adhesives (PSAs) are widely used for different applications due to their cost and convenience. However, their synthesis relies on petroleum-based acrylic monomers, which negatively affects their biodegradability and recyclability. Hybrid acrylic polymers combining acrylic monomers and acrylate-functionalized lactide-based macromonomers could help solve this issue. Recently, we reported on the remarkable biodegradability of these hybrid PSAs in their latex format when using fungal treatments. In this study, we focused on the degradation of dried PSA films, a prevalent application format in commercial settings, by utilizing fungal consortia and solid-state fermentation. Our findings indicated that the type of fungal treatment, carbon source provided, and substrate thickness significantly affected biodegradation rates. The co-culture of Pestalotiopsis microspora and Trametes versicolor demonstrated particularly promising results, achieving degradation rates exceeding 50%, notably, when utilizing wheat bran as a carbon source. Moreover, the renewal of culture media and inoculum further amplified PSA biodegradation. These results underscore the potential of fungal consortia in solid-state cultures to substantially enhance the biodegradation of hybrid acrylic PSA films, offering insights for the design of more sustainable adhesive bio-based products and finally leading to an environmentally responsible end of the PSAs lifecycle.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.