I. Egun, Zixuan Liu, Yayun Zheng, Zhaohui Wang, Jiahao Song, Yang Hou, Junting Lu, Yichao Wang, Zhengfei Chen
{"title":"Turning waste tyres into carbon electrodes for batteries: Exploring conversion methods, material traits, and performance factors","authors":"I. Egun, Zixuan Liu, Yayun Zheng, Zhaohui Wang, Jiahao Song, Yang Hou, Junting Lu, Yichao Wang, Zhengfei Chen","doi":"10.1002/cey2.571","DOIUrl":null,"url":null,"abstract":"Waste tyres (WTs) are a major global issue that needs immediate attention to ensure a sustainable environment. They are often dumped in landfills or incinerated in open environments, which leads to environmental pollution. However, various thermochemical conversion methods have shown promising results as treatment routes to tackle the WT problem while creating new materials for industries. One such material is WT char, which has properties comparable to those of carbon materials used as an active electrode material in batteries. Therefore, a systematic review of the various thermochemical approaches used to convert WTs into carbon materials for electrode applications was conducted. The review shows that pretreatment processes, various process routes, and operating parameters affect derived carbon properties and its respective electrochemical performance. WT‐derived carbon has the potential to yield a high specific capacity greater than the traditional graphite (372 mAh g−1) commonly used in lithium‐ion batteries. Finally, the review outlines the challenges of the process routes, as well as opportunities and future research directions for electrode carbon materials from WTs.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.571","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Waste tyres (WTs) are a major global issue that needs immediate attention to ensure a sustainable environment. They are often dumped in landfills or incinerated in open environments, which leads to environmental pollution. However, various thermochemical conversion methods have shown promising results as treatment routes to tackle the WT problem while creating new materials for industries. One such material is WT char, which has properties comparable to those of carbon materials used as an active electrode material in batteries. Therefore, a systematic review of the various thermochemical approaches used to convert WTs into carbon materials for electrode applications was conducted. The review shows that pretreatment processes, various process routes, and operating parameters affect derived carbon properties and its respective electrochemical performance. WT‐derived carbon has the potential to yield a high specific capacity greater than the traditional graphite (372 mAh g−1) commonly used in lithium‐ion batteries. Finally, the review outlines the challenges of the process routes, as well as opportunities and future research directions for electrode carbon materials from WTs.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.