{"title":"An Analytical Model to Evaluate the Volumetric Strain in a Polymeric Material Using Terahertz Time-Domain Spectroscopy","authors":"Sushrut Karmarkar, Mahavir Singh, Vikas Tomar","doi":"10.1007/s10921-024-01095-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work develops a polarization-dependent analytical model using terahertz time-domain spectroscopy (THz-TDS) for computing strain in materials. The model establishes a correlation between volumetric strain and the change in time of arrival for a THz pulse by using the dielectrostrictive properties, variations in doping particle density, and changes in the thickness of the sample resulting from Poisson’s effects. The analytical model is validated through strain mapping of polydimethylsiloxane (PDMS) doped with passive highly dielectrostrictive strontium titanate (STO). Two experiments, using an open-hole tensile and a circular edge-notch specimen are conducted to show the efficacy of the proposed. The stress relaxation behavior of the composite is measured and accounted for to prevent changes in strain during the measurement window. The THz strain mapping results are compared with the finite element model (FEM) and surface strain measurements using the digital image correlation (DIC) method. The experimental findings exhibit sensitivity to material features such as particle clumping and edge effects. The THz strain map shows a strong agreement with FEM and DIC results, thus demonstrating the applicability of this technique for surface and sub-surface strain mapping in polymeric composites.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01095-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This work develops a polarization-dependent analytical model using terahertz time-domain spectroscopy (THz-TDS) for computing strain in materials. The model establishes a correlation between volumetric strain and the change in time of arrival for a THz pulse by using the dielectrostrictive properties, variations in doping particle density, and changes in the thickness of the sample resulting from Poisson’s effects. The analytical model is validated through strain mapping of polydimethylsiloxane (PDMS) doped with passive highly dielectrostrictive strontium titanate (STO). Two experiments, using an open-hole tensile and a circular edge-notch specimen are conducted to show the efficacy of the proposed. The stress relaxation behavior of the composite is measured and accounted for to prevent changes in strain during the measurement window. The THz strain mapping results are compared with the finite element model (FEM) and surface strain measurements using the digital image correlation (DIC) method. The experimental findings exhibit sensitivity to material features such as particle clumping and edge effects. The THz strain map shows a strong agreement with FEM and DIC results, thus demonstrating the applicability of this technique for surface and sub-surface strain mapping in polymeric composites.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.