Nshimirimana Jonas, J. Kimani, James Kimotho, Matthew Mutinda Munyao, S. Nzou
{"title":"Synergistic Effect of Co-Administered SARS-CoV-2 Vaccines Improves Immune Responses in BALB/c Mice: A Preliminary Study","authors":"Nshimirimana Jonas, J. Kimani, James Kimotho, Matthew Mutinda Munyao, S. Nzou","doi":"10.3390/immuno4020012","DOIUrl":null,"url":null,"abstract":"Various vaccine platforms have been approved for broad use to prevent the transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. However, these vaccines exhibit distinct differences in immunogenicity and efficacy, which decline after vaccination and are further exacerbated by the emergence of virus variants and mutants. This study reports the immunization outcomes against the SARS-CoV-2 virus by assessing the immune responses and safety of different SARS-CoV-2 vaccines co-administered in BALB/c mice. Vaccine combinations comprising mRNA/adenovirus26-vector, mRNA/inactivated, adenovirus26-vector/inactivated, and mRNA/adenovirus26-vector/inactivated vaccines were prepared in optimized doses, and their activities upon immunization evaluated in comparison with individual mRNA, adenovirus26-vectored, and inactivated vaccines. Fourteen- and 28-days post-immunization, we measured spike-specific IgG response using Enzyme-Linked Immunosorbent Assay (ELISA), cytokine expression profiles through Quantitative real-time polymerase chain reaction (RT-PCR), and evaluated safety through histopathological examination. The mRNA/Vector/Inactivated group exhibited slightly higher anti-spike IgG levels, albeit not statistically significant (p > 0.132). Importantly, this regimen induced elevated IL-6 and IFN-γ mRNA expression levels (p < 0.0001) compared to immunization with individual vaccines. In summary, this study demonstrated that co-administering the mRNA/adenovirus26 vector/inactivated SARS-CoV-2 vaccines improved spike-specific IgG response, triggered significantly enhanced IL-6 and IFN-γ mRNA expression levels, and proved safe in mice.","PeriodicalId":517404,"journal":{"name":"Immuno","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immuno","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/immuno4020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Various vaccine platforms have been approved for broad use to prevent the transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. However, these vaccines exhibit distinct differences in immunogenicity and efficacy, which decline after vaccination and are further exacerbated by the emergence of virus variants and mutants. This study reports the immunization outcomes against the SARS-CoV-2 virus by assessing the immune responses and safety of different SARS-CoV-2 vaccines co-administered in BALB/c mice. Vaccine combinations comprising mRNA/adenovirus26-vector, mRNA/inactivated, adenovirus26-vector/inactivated, and mRNA/adenovirus26-vector/inactivated vaccines were prepared in optimized doses, and their activities upon immunization evaluated in comparison with individual mRNA, adenovirus26-vectored, and inactivated vaccines. Fourteen- and 28-days post-immunization, we measured spike-specific IgG response using Enzyme-Linked Immunosorbent Assay (ELISA), cytokine expression profiles through Quantitative real-time polymerase chain reaction (RT-PCR), and evaluated safety through histopathological examination. The mRNA/Vector/Inactivated group exhibited slightly higher anti-spike IgG levels, albeit not statistically significant (p > 0.132). Importantly, this regimen induced elevated IL-6 and IFN-γ mRNA expression levels (p < 0.0001) compared to immunization with individual vaccines. In summary, this study demonstrated that co-administering the mRNA/adenovirus26 vector/inactivated SARS-CoV-2 vaccines improved spike-specific IgG response, triggered significantly enhanced IL-6 and IFN-γ mRNA expression levels, and proved safe in mice.