Exploring the characteristics and thermal behavior of double base propellants based on nitrocellulose and diethylene glycol dinitrate in the presence of ternary-nanothermites containing various oxidizers

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL
Mohammed Dourari, Ahmed Fouzi Tarchoun, Djalal Trache, Amir Abdelaziz, Roufaida Tiliouine, Tessnim Barkat, Slimane Bekhouche, Thomas M. Klapötke, Sourbh Thakur
{"title":"Exploring the characteristics and thermal behavior of double base propellants based on nitrocellulose and diethylene glycol dinitrate in the presence of ternary-nanothermites containing various oxidizers","authors":"Mohammed Dourari,&nbsp;Ahmed Fouzi Tarchoun,&nbsp;Djalal Trache,&nbsp;Amir Abdelaziz,&nbsp;Roufaida Tiliouine,&nbsp;Tessnim Barkat,&nbsp;Slimane Bekhouche,&nbsp;Thomas M. Klapötke,&nbsp;Sourbh Thakur","doi":"10.1007/s11144-024-02670-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, three distinct ternary-nanothermites were subsequently integrated into double base propellant formulated with nitrocellulose (NC) and diethylene glycol dinitrate (DEGDN). These nanothermites consisted of magnesium and aluminum alloy (MgAl) as fuel and metal oxides (CuO, NiO, and TiO<sub>2</sub>) acting as oxidizers. Experimental results demonstrated the uniform distribution of the three investigated nanothermites throughout the NC/DEGDN composite. DSC findings indicated a significant increase in the overall heat release of the NC/DEGDN double base propellant upon the addition of the three nanothermites. It is found that the type of oxidizer within the nanothermite composition played a crucial role in the thermo-kinetic proprieties of the NC/DEGDN propellant. Specifically, nanothermites incorporating CuO and TiO<sub>2</sub> acted as catalysts, substantially enhancing the thermolysis of the propellant. In contrast, MgAl–NiO exhibited a stabilizing effect on the thermal decomposition of NC/DEGDN propellant. These findings offer appreciated insights into the tailoring properties of double-base propellant by selectively incorporating specific nanothermites based on their oxidizer content.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2753 - 2771"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02670-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, three distinct ternary-nanothermites were subsequently integrated into double base propellant formulated with nitrocellulose (NC) and diethylene glycol dinitrate (DEGDN). These nanothermites consisted of magnesium and aluminum alloy (MgAl) as fuel and metal oxides (CuO, NiO, and TiO2) acting as oxidizers. Experimental results demonstrated the uniform distribution of the three investigated nanothermites throughout the NC/DEGDN composite. DSC findings indicated a significant increase in the overall heat release of the NC/DEGDN double base propellant upon the addition of the three nanothermites. It is found that the type of oxidizer within the nanothermite composition played a crucial role in the thermo-kinetic proprieties of the NC/DEGDN propellant. Specifically, nanothermites incorporating CuO and TiO2 acted as catalysts, substantially enhancing the thermolysis of the propellant. In contrast, MgAl–NiO exhibited a stabilizing effect on the thermal decomposition of NC/DEGDN propellant. These findings offer appreciated insights into the tailoring properties of double-base propellant by selectively incorporating specific nanothermites based on their oxidizer content.

Abstract Image

探索硝化纤维素和二乙二醇二硝酸酯为基础的双基推进剂在含有各种氧化剂的三元纳米热剂存在下的特性和热行为
在这项研究中,三种不同的三元纳米热物质随后被整合到由硝化纤维素(NC)和二乙二醇二硝酸酯(DEGDN)配制的双基推进剂中。这些纳米热剂由作为燃料的镁铝合金(MgAl)和作为氧化剂的金属氧化物(CuO、NiO 和 TiO2)组成。实验结果表明,所研究的三种纳米热物质在整个 NC/DEGDN 复合材料中分布均匀。DSC 研究结果表明,添加这三种纳米热剂后,NC/DEGDN 双基推进剂的总体放热量显著增加。研究发现,纳米热敏剂成分中氧化剂的类型对 NC/DEGDN 推进剂的热动力学特性起着至关重要的作用。具体来说,含有 CuO 和 TiO2 的纳米温石棉可作为催化剂,大大提高推进剂的热分解。相比之下,MgAl-NiO 对 NC/DEGDN 推进剂的热分解具有稳定作用。这些发现为根据氧化剂含量选择性地加入特定的纳米热物质来定制双基推进剂的特性提供了令人赞赏的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信