{"title":"An Adaptive Similar Scenario Matching Method for Predicting Aircraft Taxiing Time","authors":"Peiran Qiao, Minghua Hu, Jianan Yin, Jiaming Su, Yutong Chen, Mengxuan Yin","doi":"10.3390/aerospace11060461","DOIUrl":null,"url":null,"abstract":"Accurate prediction of taxiing time is important in ensuring efficient and safe operations on the airport surface. It helps improve ground operation efficiency, reduce fuel waste, and improve carbon emissions at the airport. In actual operations, taxiing time is influenced by various factors, including a large number of categorical features. However, few previous studies have focused on selecting such features. Additionally, traditional taxiing time prediction methods are often black-box models that only provide a single prediction result; they fail to provide effective practical references for controllers. Therefore, this paper analyses the features that affect taxiing time from different data types and forms a taxi feature set consisting of nine key features. We also propose a taxiing time prediction method based on adaptive scenario matching rules. This process classifies the scenarios into multiple typical historical scenario sets and adaptively matches the current target scenario to a typical scenario set based on quantified rules. Then, based on the matching results, a pre-trained model obtained from the corresponding scenario set is used to predict the taxiing time of an aircraft in the target scenario, aiming to mitigate the impact of data heterogeneity on prediction results. Experimental results show that compared to baseline methods, the mean absolute error and root mean square error of the proposed method decreased by 4.8% and 12.6%, respectively. This method significantly reduces the fluctuations in results caused by sample heterogeneity and enhances controllers’ acceptance of prediction results from the model. It can be used to further improve auxiliary decision making systems and enhance the precise control capabilities of airport surface operations.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060461","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of taxiing time is important in ensuring efficient and safe operations on the airport surface. It helps improve ground operation efficiency, reduce fuel waste, and improve carbon emissions at the airport. In actual operations, taxiing time is influenced by various factors, including a large number of categorical features. However, few previous studies have focused on selecting such features. Additionally, traditional taxiing time prediction methods are often black-box models that only provide a single prediction result; they fail to provide effective practical references for controllers. Therefore, this paper analyses the features that affect taxiing time from different data types and forms a taxi feature set consisting of nine key features. We also propose a taxiing time prediction method based on adaptive scenario matching rules. This process classifies the scenarios into multiple typical historical scenario sets and adaptively matches the current target scenario to a typical scenario set based on quantified rules. Then, based on the matching results, a pre-trained model obtained from the corresponding scenario set is used to predict the taxiing time of an aircraft in the target scenario, aiming to mitigate the impact of data heterogeneity on prediction results. Experimental results show that compared to baseline methods, the mean absolute error and root mean square error of the proposed method decreased by 4.8% and 12.6%, respectively. This method significantly reduces the fluctuations in results caused by sample heterogeneity and enhances controllers’ acceptance of prediction results from the model. It can be used to further improve auxiliary decision making systems and enhance the precise control capabilities of airport surface operations.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.