Jingwen Lin, Xu Wang, Zhenyun Zhao, Dongliang Chen, Rumin Liu, Zhizhen Ye, Bin Lu, Yang Hou, Jianguo Lu
{"title":"Design of pH‐universal electrocatalysts for hydrogen evolution reaction","authors":"Jingwen Lin, Xu Wang, Zhenyun Zhao, Dongliang Chen, Rumin Liu, Zhizhen Ye, Bin Lu, Yang Hou, Jianguo Lu","doi":"10.1002/cey2.555","DOIUrl":null,"url":null,"abstract":"The path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.555","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.