Extremal problems for typically real odd polynomials

Pub Date : 2024-06-08 DOI:10.1007/s10474-024-01440-z
D. Dmitrishin, D. Gray, A. Stokolos, I. Tarasenko
{"title":"Extremal problems for typically real odd polynomials","authors":"D. Dmitrishin,&nbsp;D. Gray,&nbsp;A. Stokolos,&nbsp;I. Tarasenko","doi":"10.1007/s10474-024-01440-z","DOIUrl":null,"url":null,"abstract":"<div><p>On the class of typically real odd polynomials of degree <span>\\(2N-1\\)</span>\n</p><div><div><span>$$F(z)=z+\\sum_{j=2}^Na_jz^{2j-1}$$</span></div></div><p>\nwe consider two problems: 1) stretching the central \nunit disc under the above polynomial mappings and 2) estimating the coefficient <span>\\(a_2.\\)</span>\nIt is shown that \n</p><div><div><span>$$\\begin{gathered} |{F(z)}|\\le \\frac12\\csc^2\\left({\\frac{\\pi}{2N+2}}\\right),\\\\-1+4\\sin^2\\left({\\frac{\\pi}{2N+4}}\\right)\\le a_2\\le-1+4\\cos^2\\left({\\frac{\\pi}{N+2}}\\right) \\quad \\text{for odd $N$,}\\end{gathered} $$</span></div></div><p>\nand\n</p><div><div><span>$$-1+4(\\nu_N)^2\\le a_2\\le -1+4\\cos^2\\left({\\frac{\\pi}{N+2}}\\right) \\quad \\text{for even $N$,}$$</span></div></div><p>\nwhere <span>\\(\\nu_N\\)</span> is a minimal positive root of the equation <span>\\(U'_{N+1}(x) = 0\\)</span> with <span>\\(U'_{N + 1}(x)\\)</span> being the derivative of the Chebyshev polynomial of the second kind of the corresponding order.\nThe above boundaries are sharp, the corresponding estremizers are unique and the coefficients are determined. \n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01440-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On the class of typically real odd polynomials of degree \(2N-1\)

$$F(z)=z+\sum_{j=2}^Na_jz^{2j-1}$$

we consider two problems: 1) stretching the central unit disc under the above polynomial mappings and 2) estimating the coefficient \(a_2.\) It is shown that

$$\begin{gathered} |{F(z)}|\le \frac12\csc^2\left({\frac{\pi}{2N+2}}\right),\\-1+4\sin^2\left({\frac{\pi}{2N+4}}\right)\le a_2\le-1+4\cos^2\left({\frac{\pi}{N+2}}\right) \quad \text{for odd $N$,}\end{gathered} $$

and

$$-1+4(\nu_N)^2\le a_2\le -1+4\cos^2\left({\frac{\pi}{N+2}}\right) \quad \text{for even $N$,}$$

where \(\nu_N\) is a minimal positive root of the equation \(U'_{N+1}(x) = 0\) with \(U'_{N + 1}(x)\) being the derivative of the Chebyshev polynomial of the second kind of the corresponding order. The above boundaries are sharp, the corresponding estremizers are unique and the coefficients are determined.

分享
查看原文
典型实奇数多项式的极值问题
在阶数为(2N-1\)$$F(z)=z+\sum_{j=2}^Na_jz^{2j-1}$$的典型实奇数多项式类上,我们考虑了两个问题:1)在上述多项式映射下拉伸中心单位圆盘;2)估计系数(a_2.\)。|{F(z)}|le \frac12\csc^2\left({\frac{\pi}{2N+2}}\right),\-1+4\sin^2\left({\frac{\pi}{2N+4}}\right)\le a_2\le-1+4\cos^2\left({\frac{\pi}{N+2}}\right) \quad \text{for odd $N$、}end{gathered} $$and$$-1+4(\nu_N)^2\le a_2\le -1+4\cos^2\left({\frac\pi}{N+2}}\right) \quad \text{对于偶数 $N$、其中 \(\nu_N\) 是方程 \(U'_{N+1}(x) = 0\) 的最小正根,\(U'_{N+1}(x)\) 是相应阶的切比雪夫二阶多项式的导数。上述边界是尖锐的,相应的estremizers是唯一的,系数也是确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信