Thermal Annealing of AlMn Transition Edge Sensors for Optimization in Cosmic Microwave Background Experiments

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Benjamin Westbrook, Bhoomija Prasad, Christopher R. Raum, Adrian T. Lee, Aritoki Suzuki, Johannes Hubmayr, Shannon M. Duff, Micheal J. Link, Tammy J. Lucas
{"title":"Thermal Annealing of AlMn Transition Edge Sensors for Optimization in Cosmic Microwave Background Experiments","authors":"Benjamin Westbrook,&nbsp;Bhoomija Prasad,&nbsp;Christopher R. Raum,&nbsp;Adrian T. Lee,&nbsp;Aritoki Suzuki,&nbsp;Johannes Hubmayr,&nbsp;Shannon M. Duff,&nbsp;Micheal J. Link,&nbsp;Tammy J. Lucas","doi":"10.1007/s10909-024-03130-0","DOIUrl":null,"url":null,"abstract":"<div><p>The 2020 decadal review recognized the measurement of the polarization of the cosmic microwave background (CMB) to be a top priority for the decade. CMB experiments including POLARBEAR2/Simons Array, Atacama Cosmology Telescope/Advanced-ACT, SPT-3G, the Simons Observatory, and CMB-S4 have or will use transition edge sensor (TES) bolometer fabricated with Aluminum doped with Manganese (AlMn). AlMn is a popular material choice as the superconducting transition temperature (<span>\\(T_c\\)</span>) and normal resistance (<span>\\(R_n\\)</span>) of the TES can be tuned with Mn concentration, geometric patterning, film thickness, and thermal annealing. In addition the conductivity is appropriate for both time division multiplexing and frequency division multiplexing that require 10 m<span>\\(\\Omega\\)</span> and 1 <span>\\(\\Omega\\)</span> sensors respectively. In this paper we present work on the ability to tune the <span>\\(T_c\\)</span> of a film based on its time and temperature thermal tuning profile combined with room temperature monitoring of film resistivity. Such control allows for the fabrication of a wide range of TES parameters from a single AlMn concentration. Scanning electron microscope (SEM) imaging shows that the AlMn film’s grain boundaries are changed by thermal annealing making the film more conductive and raising its superconducting transition temperatures, and that at high enough temperatures will eventually recover the <span>\\(T_c\\)</span> of bulk Al. We find that baking films at <span>\\(\\sim\\)</span>200 <span>\\(^\\circ\\text{C}\\)</span> for tens of minutes yields a <span>\\(T_c\\)</span> that is suitable for 100 mK base temperature experiments and we present on the thermal tune profiles of several different thicknesses of AlMn.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"264 - 272"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03130-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The 2020 decadal review recognized the measurement of the polarization of the cosmic microwave background (CMB) to be a top priority for the decade. CMB experiments including POLARBEAR2/Simons Array, Atacama Cosmology Telescope/Advanced-ACT, SPT-3G, the Simons Observatory, and CMB-S4 have or will use transition edge sensor (TES) bolometer fabricated with Aluminum doped with Manganese (AlMn). AlMn is a popular material choice as the superconducting transition temperature (\(T_c\)) and normal resistance (\(R_n\)) of the TES can be tuned with Mn concentration, geometric patterning, film thickness, and thermal annealing. In addition the conductivity is appropriate for both time division multiplexing and frequency division multiplexing that require 10 m\(\Omega\) and 1 \(\Omega\) sensors respectively. In this paper we present work on the ability to tune the \(T_c\) of a film based on its time and temperature thermal tuning profile combined with room temperature monitoring of film resistivity. Such control allows for the fabrication of a wide range of TES parameters from a single AlMn concentration. Scanning electron microscope (SEM) imaging shows that the AlMn film’s grain boundaries are changed by thermal annealing making the film more conductive and raising its superconducting transition temperatures, and that at high enough temperatures will eventually recover the \(T_c\) of bulk Al. We find that baking films at \(\sim\)200 \(^\circ\text{C}\) for tens of minutes yields a \(T_c\) that is suitable for 100 mK base temperature experiments and we present on the thermal tune profiles of several different thicknesses of AlMn.

Abstract Image

为优化宇宙微波背景实验而对铝锰过渡边缘传感器进行热退火处理
2020 十年期审查认为,测量宇宙微波背景(CMB)的极化是这十年的首要任务。包括 POLARBEAR2/西蒙斯阵列、阿塔卡马宇宙学望远镜/Advanced-ACT、SPT-3G、西蒙斯天文台和 CMB-S4 在内的 CMB 实验已经或将要使用由掺锰铝 (AlMn) 制造的过渡边缘传感器 (TES) 波长计。铝锰是一种很受欢迎的材料,因为 TES 的超导转变温度(\(T_c\))和法向电阻(\(R_n\))可以通过锰浓度、几何图案、薄膜厚度和热退火来调整。此外,电导率还适用于时分复用和频分复用,它们分别需要 10 m\(\Omega\) 和 1 \(\Omega\) 传感器。在本文中,我们介绍了根据薄膜的时间和温度热调节曲线结合室温监测薄膜电阻率来调节薄膜的 \(T_c\) 的能力。通过这种控制,可以用单一的铝锰浓度制造出范围广泛的 TES 参数。扫描电子显微镜(SEM)成像显示,热退火改变了铝锰薄膜的晶界,使薄膜更具导电性,并提高了其超导转变温度,在足够高的温度下,最终将恢复块状铝的\(T_c\)。我们发现在 \(\sim\)200 \(^\circ\text{C}\)的温度下烘烤薄膜几十分钟就能得到适合 100 mK 基准温度实验的 \(T_c\),我们还展示了几种不同厚度的铝锰的热调曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信