Research on the Protection of machine-generated data under the background of data element marketization

Li Jie
{"title":"Research on the Protection of machine-generated data under the background of data element marketization","authors":"Li Jie","doi":"10.47577/tssj.v58i1.11050","DOIUrl":null,"url":null,"abstract":"Introduction: The study emphasizes non-personal data protection and proposes a way tailored to China's particular requirements for machine-generated data legal protection. Integrating foreign experiences into legislation is the goal. Aim and objectives: This study examines machine-generated data legal protections throughout data marketization to understand and improve its protection in changing digital environments. Method: This study compared China's growing data protection rules to Europe's GDPR and the US's CCPA. The study uses the Penta Helix framework to evaluate non-personal data in Shenzhen, Southern China, using document reviews, field observations, interviews, and surveys. Data quality, commercial sector compliance, public sector effect, academic contributions, civil society involvement, innovation, and ethics are evaluated. Result: This study compares Chinese and American non-personal data governance. The Cybersecurity and Data Security Law in China and the California Consumer Privacy Act in the US are highlighted. Clear frameworks and international coordination are needed to define and protect non-personal data. The private sector needs, public sector governance, academia's concerns, and civil society's participation. Both countries must balance data-driven innovation with privacy, security, and ethics. Conclusion: Safeguarding China's non-personal data rights, particularly machine-generated data, is imperative, requiring global perspectives, rigorous legal analysis, and collaboration to navigate challenges.","PeriodicalId":127066,"journal":{"name":"Technium Social Sciences Journal","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technium Social Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47577/tssj.v58i1.11050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The study emphasizes non-personal data protection and proposes a way tailored to China's particular requirements for machine-generated data legal protection. Integrating foreign experiences into legislation is the goal. Aim and objectives: This study examines machine-generated data legal protections throughout data marketization to understand and improve its protection in changing digital environments. Method: This study compared China's growing data protection rules to Europe's GDPR and the US's CCPA. The study uses the Penta Helix framework to evaluate non-personal data in Shenzhen, Southern China, using document reviews, field observations, interviews, and surveys. Data quality, commercial sector compliance, public sector effect, academic contributions, civil society involvement, innovation, and ethics are evaluated. Result: This study compares Chinese and American non-personal data governance. The Cybersecurity and Data Security Law in China and the California Consumer Privacy Act in the US are highlighted. Clear frameworks and international coordination are needed to define and protect non-personal data. The private sector needs, public sector governance, academia's concerns, and civil society's participation. Both countries must balance data-driven innovation with privacy, security, and ethics. Conclusion: Safeguarding China's non-personal data rights, particularly machine-generated data, is imperative, requiring global perspectives, rigorous legal analysis, and collaboration to navigate challenges.
数据元素市场化背景下机器生成数据的保护研究
导言:本研究强调非个人数据保护,并提出了适合中国特殊要求的机器生成数据法律保护方式。目标是将国外经验融入立法。目的和目标:本研究探讨了数据市场化过程中机器生成数据的法律保护问题,以了解和改进在不断变化的数字环境中对机器生成数据的保护。研究方法:本研究将中国不断发展的数据保护规则与欧洲的 GDPR 和美国的 CCPA 进行了比较。研究采用 Penta Helix 框架,通过文件审查、实地观察、访谈和调查,对中国南方深圳的非个人数据进行评估。对数据质量、商业部门合规性、公共部门效果、学术贡献、民间社会参与、创新和道德进行了评估。结果:本研究比较了中美两国的非个人数据治理情况。重点介绍了中国的《网络安全和数据安全法》和美国的《加州消费者隐私法》。界定和保护非个人数据需要明确的框架和国际协调。私营部门的需求、公共部门的治理、学术界的关注以及民间社会的参与。两国必须在数据驱动的创新与隐私、安全和道德之间取得平衡。结论:保障中国的非个人数据权利,尤其是机器生成的数据,势在必行,需要全球视角、严谨的法律分析和合作来应对挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信