{"title":"A reliability analysis method for electromagnet performance degradation based on FMEA and fuzzy inference system","authors":"Jihong Pang, Jinkun Dai, Xinze Lian, Zhigang Ding","doi":"10.1002/qre.3602","DOIUrl":null,"url":null,"abstract":"Electromagnets are often used in indirect control for industrial applications. The ability of an electromagnet to control objects should decrease with performance degradation. And electromagnets product poses a danger to people and objects in the working environment. So, it is very difficult to analyze the reliability of electromagnetic performance degradation because of the complicated working condition. Failure Mode and Effect Analysis (FMEA) is the most commonly used tool for product reliability analysis. The new version of FMEA uses integer as evaluation value, which cannot represent the hesitation psychology of the evaluator. The Action Priority (AP) table of the FMEA describes the relationship between the evaluation of influencing factors and the risk level of the failure mode, which provides rules for determining the risk level of the failure mode. However, the AP table may result in multiple failure modes having the same ranking, which does not align with the intention of FMEA to prevent failures. Therefore, this paper proposes a reliability analysis method for electromagnetic performance degradation based on FMEA and FIS. Firstly, the Double Hierarchy Hesitant Fuzzy Linguistic Term Set (DHHFLTS) is used as the evaluation language to describe the hesitation psychology of evaluators. Secondly, the AP table of FMEA is used as FIS fuzzy inference rule. In this way, the idea of FMEA to determine the risk level of failure mode is retained and the problem of FIS fuzzy rule making is overcome. Then, FIS defuzzification AP table inference results to determine the risk ranking of failure modes. This avoids situations where the order of failure modes is equal. Finally, a performance degradation model of the electromagnet is constructed based on the Wiener process, and the calculation results of the new method are verified.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnets are often used in indirect control for industrial applications. The ability of an electromagnet to control objects should decrease with performance degradation. And electromagnets product poses a danger to people and objects in the working environment. So, it is very difficult to analyze the reliability of electromagnetic performance degradation because of the complicated working condition. Failure Mode and Effect Analysis (FMEA) is the most commonly used tool for product reliability analysis. The new version of FMEA uses integer as evaluation value, which cannot represent the hesitation psychology of the evaluator. The Action Priority (AP) table of the FMEA describes the relationship between the evaluation of influencing factors and the risk level of the failure mode, which provides rules for determining the risk level of the failure mode. However, the AP table may result in multiple failure modes having the same ranking, which does not align with the intention of FMEA to prevent failures. Therefore, this paper proposes a reliability analysis method for electromagnetic performance degradation based on FMEA and FIS. Firstly, the Double Hierarchy Hesitant Fuzzy Linguistic Term Set (DHHFLTS) is used as the evaluation language to describe the hesitation psychology of evaluators. Secondly, the AP table of FMEA is used as FIS fuzzy inference rule. In this way, the idea of FMEA to determine the risk level of failure mode is retained and the problem of FIS fuzzy rule making is overcome. Then, FIS defuzzification AP table inference results to determine the risk ranking of failure modes. This avoids situations where the order of failure modes is equal. Finally, a performance degradation model of the electromagnet is constructed based on the Wiener process, and the calculation results of the new method are verified.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.