The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS
Spencer D. Zeigler, Morgan Baker, J. Metcalf, R. Flowers
{"title":"The Geometric Correction Method for zircon (U–Th) ∕ He chronology: correcting systematic error and assigning uncertainties to alpha-ejection corrections and eU concentrations","authors":"Spencer D. Zeigler, Morgan Baker, J. Metcalf, R. Flowers","doi":"10.5194/gchron-6-199-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The conventional zircon (U–Th) / He (ZHe) method typically uses microscopy measurements of the dated grain together with the assumption that the zircon can be appropriately modeled as a geometrically perfect tetragonal or ellipsoidal prism in the calculation of volume (V), alpha-ejection correction (FT), equivalent spherical radius (RFT), effective uranium concentration (eU), and corrected (U–Th) / He date. Here, we develop a set of corrections for systematic error and determine uncertainties to be used in the calculation of the above parameters for zircon, using the same methodology as Zeigler et al. (2023) for apatite. Our approach involved acquiring both “2D” microscopy measurements and high-resolution “3D” nano-computed tomography (CT) data for a suite of 223 zircon grains from nine samples showcasing a wide range of morphology, size, age, and lithological source, calculating the V, FT, and RFT values for the 2D and 3D measurements and comparing the 2D vs. 3D results. We find that the values derived from the 2D microscopy data overestimate the true 3D V, FT, and RFT values for zircon, with one exception (V of ellipsoidal grains). Correction factors for this misestimation determined by regressing the 3D vs. 2D data range from 0.81–1.04 for V, 0.97–1.0 for FT, and 0.92–0.98 for RFT, depending on zircon geometry. Uncertainties (1σ) derived from the scatter of data around the regression line are 13 %–21 % for V, 5 %–1 % for FT, and 8 % for RFT, again depending on zircon morphologies. Like for apatite, the main control on the magnitude of the corrections and uncertainties is grain geometry, with grain size being a secondary control on FT uncertainty. Propagating these uncertainties into a real dataset (N=28 ZHe analyses) generates 1σ uncertainties of 12 %–21 % in eU and 3 %–7 % in the corrected ZHe date when both analytical and geometric uncertainties are included. Accounting for the geometric corrections and uncertainties is important for appropriately reporting, plotting, and interpreting ZHe data. For both zircon and apatite, the Geometric Correction Method is a practical and straightforward approach for calculating more accurate (U–Th) / He data and for including geometric uncertainty in eU and date uncertainties.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-6-199-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The conventional zircon (U–Th) / He (ZHe) method typically uses microscopy measurements of the dated grain together with the assumption that the zircon can be appropriately modeled as a geometrically perfect tetragonal or ellipsoidal prism in the calculation of volume (V), alpha-ejection correction (FT), equivalent spherical radius (RFT), effective uranium concentration (eU), and corrected (U–Th) / He date. Here, we develop a set of corrections for systematic error and determine uncertainties to be used in the calculation of the above parameters for zircon, using the same methodology as Zeigler et al. (2023) for apatite. Our approach involved acquiring both “2D” microscopy measurements and high-resolution “3D” nano-computed tomography (CT) data for a suite of 223 zircon grains from nine samples showcasing a wide range of morphology, size, age, and lithological source, calculating the V, FT, and RFT values for the 2D and 3D measurements and comparing the 2D vs. 3D results. We find that the values derived from the 2D microscopy data overestimate the true 3D V, FT, and RFT values for zircon, with one exception (V of ellipsoidal grains). Correction factors for this misestimation determined by regressing the 3D vs. 2D data range from 0.81–1.04 for V, 0.97–1.0 for FT, and 0.92–0.98 for RFT, depending on zircon geometry. Uncertainties (1σ) derived from the scatter of data around the regression line are 13 %–21 % for V, 5 %–1 % for FT, and 8 % for RFT, again depending on zircon morphologies. Like for apatite, the main control on the magnitude of the corrections and uncertainties is grain geometry, with grain size being a secondary control on FT uncertainty. Propagating these uncertainties into a real dataset (N=28 ZHe analyses) generates 1σ uncertainties of 12 %–21 % in eU and 3 %–7 % in the corrected ZHe date when both analytical and geometric uncertainties are included. Accounting for the geometric corrections and uncertainties is important for appropriately reporting, plotting, and interpreting ZHe data. For both zircon and apatite, the Geometric Correction Method is a practical and straightforward approach for calculating more accurate (U–Th) / He data and for including geometric uncertainty in eU and date uncertainties.
锆石(U-Th)∕He年代学的几何校正法:校正系统误差并分配阿尔法射出校正和 eU 浓度的不确定性
摘要。传统的锆石(U-Th)/氦(ZHe)方法通常使用对年代晶粒的显微镜测量,并假定锆石可以适当地建模为几何上完美的四方或椭圆棱柱,以计算体积(V)、α-喷射校正(FT)、等效球半径(RFT)、有效铀浓度(eU)和校正的(U-Th)/氦年代。在此,我们采用与 Zeigler 等人(2023 年)计算磷灰石相同的方法,为系统误差制定了一套校正方法,并确定了用于计算锆石上述参数的不确定性。我们的方法包括获取 "二维 "显微镜测量和高分辨率 "三维 "纳米计算机断层扫描(CT)数据,这些数据来自九个样品中的 223 个锆石晶粒,展示了广泛的形态、尺寸、年龄和岩性来源,计算二维和三维测量的 V、FT 和 RFT 值,并比较二维和三维结果。我们发现,从二维显微镜数据得出的值高估了锆石的真实三维 V 值、FT 值和 RFT 值,只有一个例外(椭圆形晶粒的 V 值)。根据锆石的几何形状,通过回归三维与二维数据确定的误估修正系数范围为:V 值 0.81-1.04,FT 值 0.97-1.0,RFT 值 0.92-0.98。根据回归线附近的数据散布得出的不确定性(1σ),V 为 13%-21%,FT 为 5%-1%,RFT 为 8%,同样取决于锆石的形态。与磷灰石一样,对修正和不确定性大小的主要控制是晶粒的几何形状,晶粒大小是对 FT 不确定性的次要控制。将这些不确定性传播到实际数据集(N=28 项 ZHe 分析)中,当分析和几何不确定性都包括在内时,产生的 1σ 不确定性在 eU 中为 12%-21%,在校正后的 ZHe 日期中为 3%-7%。考虑几何校正和不确定性对于适当报告、绘制和解释 ZHe 数据非常重要。对于锆石和磷灰石,几何校正法是一种实用而直接的方法,可以计算出更精确的(U-Th)/He 数据,并将几何不确定性纳入 eU 和日期不确定性中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信